Beyond Pixel-Wise Supervision for Medical Image Segmentation: From Traditional Models to Foundation Models
- URL: http://arxiv.org/abs/2404.13239v1
- Date: Sat, 20 Apr 2024 02:40:49 GMT
- Title: Beyond Pixel-Wise Supervision for Medical Image Segmentation: From Traditional Models to Foundation Models
- Authors: Yuyan Shi, Jialu Ma, Jin Yang, Shasha Wang, Yichi Zhang,
- Abstract summary: Existing segmentation algorithms mostly rely on the availability of fully annotated images with pixel-wise annotations for training.
To alleviate this challenge, there has been a growing focus on developing segmentation methods that can train deep models with weak annotations.
The emergence of vision foundation models, notably the Segment Anything Model (SAM), has introduced innovative capabilities for segmentation tasks using weak annotations.
- Score: 7.987836953849249
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image segmentation plays an important role in many image-guided clinical approaches. However, existing segmentation algorithms mostly rely on the availability of fully annotated images with pixel-wise annotations for training, which can be both labor-intensive and expertise-demanding, especially in the medical imaging domain where only experts can provide reliable and accurate annotations. To alleviate this challenge, there has been a growing focus on developing segmentation methods that can train deep models with weak annotations, such as image-level, bounding boxes, scribbles, and points. The emergence of vision foundation models, notably the Segment Anything Model (SAM), has introduced innovative capabilities for segmentation tasks using weak annotations for promptable segmentation enabled by large-scale pre-training. Adopting foundation models together with traditional learning methods has increasingly gained recent interest research community and shown potential for real-world applications. In this paper, we present a comprehensive survey of recent progress on annotation-efficient learning for medical image segmentation utilizing weak annotations before and in the era of foundation models. Furthermore, we analyze and discuss several challenges of existing approaches, which we believe will provide valuable guidance for shaping the trajectory of foundational models to further advance the field of medical image segmentation.
Related papers
- Image Segmentation in Foundation Model Era: A Survey [99.19456390358211]
Current research in image segmentation lacks a detailed analysis of distinct characteristics, challenges, and solutions associated with these advancements.
This survey seeks to fill this gap by providing a thorough review of cutting-edge research centered around FM-driven image segmentation.
An exhaustive overview of over 300 segmentation approaches is provided to encapsulate the breadth of current research efforts.
arXiv Detail & Related papers (2024-08-23T10:07:59Z) - Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey [49.47197748663787]
This review aims to provide a first comprehensive and organized overview of the state-of-the-art research results on pseudo-label methods in the field of semi-supervised semantic segmentation.
In addition, we explore the application of pseudo-label technology in medical and remote-sensing image segmentation.
arXiv Detail & Related papers (2024-03-04T10:18:38Z) - Segment Anything Model for Medical Image Segmentation: Current
Applications and Future Directions [8.216028136706948]
The recent introduction of the Segment Anything Model (SAM) signifies a noteworthy expansion of the prompt-driven paradigm into the domain of image segmentation.
We provide a comprehensive overview of recent endeavors aimed at extending the efficacy of SAM to medical image segmentation tasks.
We explore potential avenues for future research directions in SAM's role within medical image segmentation.
arXiv Detail & Related papers (2024-01-07T14:25:42Z) - Self-Prompting Large Vision Models for Few-Shot Medical Image
Segmentation [14.135249795318591]
We propose a novel perspective on self-prompting in medical vision applications.
We harness the embedding space of the Segment Anything Model to prompt itself through a simple yet effective linear pixel-wise classifier.
We achieve competitive results on multiple datasets.
arXiv Detail & Related papers (2023-08-15T08:20:07Z) - Empirical Analysis of a Segmentation Foundation Model in Prostate
Imaging [9.99042549094606]
We consider a recently developed foundation model for medical image segmentation, UniverSeg.
We conduct an empirical evaluation study in the context of prostate imaging and compare it against the conventional approach of training a task-specific segmentation model.
arXiv Detail & Related papers (2023-07-06T20:00:52Z) - Learning with Limited Annotations: A Survey on Deep Semi-Supervised
Learning for Medical Image Segmentation [8.946871799178338]
We present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation.
We analyze and discuss the limitations and several unsolved problems of existing approaches.
arXiv Detail & Related papers (2022-07-28T15:57:46Z) - Domain Generalization on Medical Imaging Classification using Episodic
Training with Task Augmentation [62.49837463676111]
We propose a novel scheme of episodic training with task augmentation on medical imaging classification.
Motivated by the limited number of source domains in real-world medical deployment, we consider the unique task-level overfitting.
arXiv Detail & Related papers (2021-06-13T03:56:59Z) - Medical Image Segmentation with Limited Supervision: A Review of Deep
Network Models [4.902303262071206]
Most cutting-edge models rely heavily on large-scale annotated training examples, which are often unavailable for clinical and health care tasks.
The strong capability of learning and generalizing from limited supervision, including a limited amount of annotations, is crucial for the successful application of deep learning models in medical image segmentation.
arXiv Detail & Related papers (2021-02-28T08:52:49Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - A Few Guidelines for Incremental Few-Shot Segmentation [57.34237650765928]
Given a pretrained segmentation model and few images containing novel classes, our goal is to learn to segment novel classes while retaining the ability to segment previously seen ones.
We show how the main problems of end-to-end training in this scenario are.
i) the drift of the batch-normalization statistics toward novel classes that we can fix with batch renormalization and.
ii) the forgetting of old classes, that we can fix with regularization strategies.
arXiv Detail & Related papers (2020-11-30T20:45:56Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.