Medical Image Segmentation with Limited Supervision: A Review of Deep
Network Models
- URL: http://arxiv.org/abs/2103.00429v1
- Date: Sun, 28 Feb 2021 08:52:49 GMT
- Title: Medical Image Segmentation with Limited Supervision: A Review of Deep
Network Models
- Authors: Jialin Peng, Ye Wang
- Abstract summary: Most cutting-edge models rely heavily on large-scale annotated training examples, which are often unavailable for clinical and health care tasks.
The strong capability of learning and generalizing from limited supervision, including a limited amount of annotations, is crucial for the successful application of deep learning models in medical image segmentation.
- Score: 4.902303262071206
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the remarkable performance of deep learning methods on various tasks,
most cutting-edge models rely heavily on large-scale annotated training
examples, which are often unavailable for clinical and health care tasks. The
labeling costs for medical images are very high, especially in medical image
segmentation, which typically requires intensive pixel/voxel-wise labeling.
Therefore, the strong capability of learning and generalizing from limited
supervision, including a limited amount of annotations, sparse annotations, and
inaccurate annotations, is crucial for the successful application of deep
learning models in medical image segmentation. However, due to its intrinsic
difficulty, segmentation with limited supervision is challenging and specific
model design and/or learning strategies are needed. In this paper, we provide a
systematic and up-to-date review of the solutions above, with summaries and
comments about the methodologies. We also highlight several problems in this
field, discussed future directions observing further investigations.
Related papers
- Enhancing Medical Image Segmentation with Deep Learning and Diffusion Models [7.53596352508181]
Medical image segmentation is crucial for accurate clinical diagnoses.
It faces challenges such as low contrast between lesions and normal tissues, unclear boundaries, and high variability across patients.
Deep learning has improved segmentation accuracy and efficiency, but it still relies heavily on expert annotations.
This article discusses the importance of medical image segmentation, the limitations of current deep learning approaches, and the potential of diffusion models to address these challenges.
arXiv Detail & Related papers (2024-11-21T17:49:15Z) - Beyond Pixel-Wise Supervision for Medical Image Segmentation: From Traditional Models to Foundation Models [7.987836953849249]
Existing segmentation algorithms mostly rely on the availability of fully annotated images with pixel-wise annotations for training.
To alleviate this challenge, there has been a growing focus on developing segmentation methods that can train deep models with weak annotations.
The emergence of vision foundation models, notably the Segment Anything Model (SAM), has introduced innovative capabilities for segmentation tasks using weak annotations.
arXiv Detail & Related papers (2024-04-20T02:40:49Z) - Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning [3.231698506153459]
Supervised learning methods achieve excellent performances when fed with a sufficient amount of labeled data.
Such labels are typically highly time-consuming, error-prone and expensive to produce.
Semi-supervised learning approaches leverage both labeled and unlabeled data, and are very useful when only a small fraction of the dataset is labeled.
arXiv Detail & Related papers (2024-04-02T09:31:06Z) - Learning with Limited Annotations: A Survey on Deep Semi-Supervised
Learning for Medical Image Segmentation [8.946871799178338]
We present a comprehensive review of recently proposed semi-supervised learning methods for medical image segmentation.
We analyze and discuss the limitations and several unsolved problems of existing approaches.
arXiv Detail & Related papers (2022-07-28T15:57:46Z) - Domain Generalization for Mammography Detection via Multi-style and
Multi-view Contrastive Learning [47.30824944649112]
A new contrastive learning scheme is developed to augment the generalization capability of deep learning model to various vendors with limited resources.
The backbone network is trained with a multi-style and multi-view unsupervised self-learning scheme for the embedding of invariant features to various vendor-styles.
The experimental results suggest that our approach can effectively improve detection performance on both seen and unseen domains.
arXiv Detail & Related papers (2021-11-21T14:29:50Z) - Every Annotation Counts: Multi-label Deep Supervision for Medical Image
Segmentation [85.0078917060652]
We propose a semi-weakly supervised segmentation algorithm to overcome this barrier.
Our approach is based on a new formulation of deep supervision and student-teacher model.
With our novel training regime for segmentation that flexibly makes use of images that are either fully labeled, marked with bounding boxes, just global labels, or not at all, we are able to cut the requirement for expensive labels by 94.22%.
arXiv Detail & Related papers (2021-04-27T14:51:19Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - Towards Unsupervised Learning for Instrument Segmentation in Robotic
Surgery with Cycle-Consistent Adversarial Networks [54.00217496410142]
We propose an unpaired image-to-image translation where the goal is to learn the mapping between an input endoscopic image and a corresponding annotation.
Our approach allows to train image segmentation models without the need to acquire expensive annotations.
We test our proposed method on Endovis 2017 challenge dataset and show that it is competitive with supervised segmentation methods.
arXiv Detail & Related papers (2020-07-09T01:39:39Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.