論文の概要: A Framework for Managing Multifaceted Privacy Leakage While Optimizing Utility in Continuous LBS Interactions
- arxiv url: http://arxiv.org/abs/2404.13407v1
- Date: Sat, 20 Apr 2024 15:20:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 19:10:11.621894
- Title: A Framework for Managing Multifaceted Privacy Leakage While Optimizing Utility in Continuous LBS Interactions
- Title(参考訳): 連続LBSインタラクションにおけるユーザビリティを最適化した多面的プライバシリーク管理フレームワーク
- Authors: Anis Bkakria, Reda Yaich,
- Abstract要約: 我々は,LBSにおけるプライバシー漏洩の理解と管理の促進を目的とした,新しいコントリビューションをいくつか提示する。
私たちのコントリビューションは、位置情報ベースのインタラクションのさまざまな側面にわたるプライバシー上の懸念を分析するための、より包括的なフレームワークを提供します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy in Location-Based Services (LBS) has become a paramount concern with the ubiquity of mobile devices and the increasing integration of location data into various applications. In this paper, we present several novel contributions aimed at advancing the understanding and management of privacy leakage in LBS. Our contributions provides a more comprehensive framework for analyzing privacy concerns across different facets of location-based interactions. Specifically, we introduce $(\epsilon, \delta)$-location privacy, $(\epsilon, \delta, \theta)$-trajectory privacy, and $(\epsilon, \delta, \theta)$-POI privacy, which offer refined mechanisms for quantifying privacy risks associated with location, trajectory, and points of interest when continuously interacting with LBS. Furthermore, we establish fundamental connections between these privacy notions, facilitating a holistic approach to privacy preservation in LBS. Additionally, we present a lower bound analysis to evaluate the utility of the proposed privacy-preserving mechanisms, offering insights into the trade-offs between privacy protection and data utility. Finally, we instantiate our framework with the Plannar Isotopic Mechanism to demonstrate its practical applicability while ensuring optimal utility and quantifying privacy leakages across various dimensions. The conducted evaluations provide a comprehensive insight into the efficacy of our framework in capturing privacy loss on location, trajectory, and Points of Interest (POI) while facilitating quantification of the ensured accuracy.
- Abstract(参考訳): 位置情報ベースのサービス(LBS)のプライバシは、モバイルデバイスの普及と、さまざまなアプリケーションへの位置情報の統合の増大において、最重要課題となっている。
本稿では,LBSにおけるプライバシー漏洩の理解と管理の促進を目的とした,新たなコントリビューションについて述べる。
私たちのコントリビューションは、位置情報ベースのインタラクションのさまざまな側面にわたるプライバシー上の懸念を分析するための、より包括的なフレームワークを提供します。
具体的には、(\epsilon, \delta)$-location privacy, $(\epsilon, \delta, \theta)$-trajectory privacy, $(\epsilon, \delta, \theta)$-POI privacyを紹介します。
さらに、これらのプライバシー概念の基本的な関係を確立し、LBSにおけるプライバシー保護の全体的アプローチを促進する。
さらに,提案するプライバシー保護機構の有用性を評価するために,プライバシー保護とデータユーティリティのトレードオフに関する知見を提供する。
最後に,本フレームワークをPlannarアイソトピック機構でインスタンス化し,その実用性を実証し,有効性を確保し,各種次元にわたるプライバシー漏洩を定量化する。
提案した評価は, 精度の定量化を図りつつ, 位置情報, トラジェクトリ, 関心点(POI)のプライバシー損失を捉える上で, フレームワークの有効性を総合的に把握するものである。
関連論文リスト
- Meeting Utility Constraints in Differential Privacy: A Privacy-Boosting Approach [7.970280110429423]
本稿では,ほとんどのノイズ付加型DP機構と互換性のあるプライバシブースティングフレームワークを提案する。
私たちのフレームワークは、ユーティリティ要件を満たすために、サポートの望ましいサブセットに出力が落ちる可能性を高める。
提案手法は,実用性制約下での標準DP機構よりも低いプライバシー損失を実現する。
論文 参考訳(メタデータ) (2024-12-13T23:34:30Z) - Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Convergent Differential Privacy Analysis for General Federated Learning: the $f$-DP Perspective [57.35402286842029]
フェデレートラーニング(Federated Learning, FL)は、ローカルプライバシを重視した効率的な協調トレーニングパラダイムである。
ディファレンシャルプライバシ(DP)は、私的保護の信頼性を捕捉し、保証するための古典的なアプローチである。
論文 参考訳(メタデータ) (2024-08-28T08:22:21Z) - Differential Confounding Privacy and Inverse Composition [32.85314813605347]
微分プライバシー(DP)を一般化するフレームワークであるDCPを導入する。
DCP機構は, 構成上のプライバシー保証を保っているが, DPの優雅な構成特性は欠如している。
Inverse Composition (IC) フレームワークを提案する。このフレームワークでは,最低ケースのプライバシ証明に頼ることなく,ターゲット保証を達成するためのプライバシ戦略を最適に設計する。
論文 参考訳(メタデータ) (2024-08-21T21:45:13Z) - Protecting Personalized Trajectory with Differential Privacy under Temporal Correlations [37.88484505367802]
本稿では,パーソナライズされたトラジェクトリプライバシ保護機構(PTPPM)を提案する。
ヒルベルト曲線に基づく最小距離探索アルゴリズムを用いて,各位置の保護位置集合(PLS)を同定する。
我々は位置摂動のための新しいPermute-and-Flip機構を提案し、データ公開プライバシー保護における初期応用を位置摂動機構にマッピングした。
論文 参考訳(メタデータ) (2024-01-20T12:59:08Z) - A Randomized Approach for Tight Privacy Accounting [63.67296945525791]
推定検証リリース(EVR)と呼ばれる新しい差分プライバシーパラダイムを提案する。
EVRパラダイムは、まずメカニズムのプライバシパラメータを推定し、その保証を満たすかどうかを確認し、最後にクエリ出力を解放する。
我々の実証的な評価は、新たに提案されたEVRパラダイムが、プライバシ保護機械学習のユーティリティプライバシトレードオフを改善することを示している。
論文 参考訳(メタデータ) (2023-04-17T00:38:01Z) - Rethinking Disclosure Prevention with Pointwise Maximal Leakage [36.3895452861944]
本稿では,秘密の$X$の低エントロピー機能の価値を開示し,実用性を実現するユーティリティとプライバシの一般モデルを提案する。
我々は、大衆の意見に反して、有意義な推論によるプライバシー保証を提供することを証明している。
PMLベースのプライバシは互換性があることを示し、差分プライバシーのような既存の概念に対する洞察を提供する。
論文 参考訳(メタデータ) (2023-03-14T10:47:40Z) - Breaking the Communication-Privacy-Accuracy Tradeoff with
$f$-Differential Privacy [51.11280118806893]
サーバが複数のユーザの協調的なデータ分析を,プライバシの懸念と限られた通信能力で調整する,フェデレートされたデータ分析問題を考える。
有限出力空間を有する離散値機構の局所的差分プライバシー保証を$f$-differential privacy (DP) レンズを用いて検討する。
より具体的には、様々な離散的評価機構の厳密な$f$-DP保証を導出することにより、既存の文献を前進させる。
論文 参考訳(メタデータ) (2023-02-19T16:58:53Z) - Optimal and Differentially Private Data Acquisition: Central and Local
Mechanisms [9.599356978682108]
プライバシに敏感なユーザからデータを収集するプラットフォームの問題を考え,その基盤となる関心パラメータを推定する。
ユーザに対して、プライバシ保証を提供するための2つの一般的な差分プライバシ設定について検討する。
このメカニズム設計問題は,ユーザのプライバシ感を真に報告するための推定器と支払器の最適選択として機能する。
論文 参考訳(メタデータ) (2022-01-10T00:27:43Z) - Privacy Amplification via Shuffling for Linear Contextual Bandits [51.94904361874446]
ディファレンシャルプライバシ(DP)を用いた文脈線形バンディット問題について検討する。
プライバシのシャッフルモデルを利用して,JDP と LDP のプライバシ/ユーティリティトレードオフを実現することができることを示す。
以上の結果から,ローカルプライバシを保ちながらシャッフルモデルを活用することで,JDPとDPのトレードオフを得ることが可能であることが示唆された。
論文 参考訳(メタデータ) (2021-12-11T15:23:28Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
我々はPGLPと呼ばれる新しい位置プライバシーの概念を提案し、カスタマイズ可能で厳格なプライバシー保証を備えたプライベートロケーションをリリースするためのリッチなインターフェースを提供する。
具体的には,ユーザの位置プライバシー要件を,表現的かつカスタマイズ可能なテキスト配置ポリシーグラフを用いて形式化する。
第3に、位置露光の検出、ポリシーグラフの修復、およびカスタマイズ可能な厳格な位置プライバシーを備えたプライベートな軌跡リリースをパイプライン化する、プライベートな位置トレースリリースフレームワークを設計する。
論文 参考訳(メタデータ) (2020-05-04T04:25:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。