NeurCADRecon: Neural Representation for Reconstructing CAD Surfaces by Enforcing Zero Gaussian Curvature
- URL: http://arxiv.org/abs/2404.13420v1
- Date: Sat, 20 Apr 2024 16:36:24 GMT
- Title: NeurCADRecon: Neural Representation for Reconstructing CAD Surfaces by Enforcing Zero Gaussian Curvature
- Authors: Qiujie Dong, Rui Xu, Pengfei Wang, Shuangmin Chen, Shiqing Xin, Xiaohong Jia, Wenping Wang, Changhe Tu,
- Abstract summary: High-fidelity reconstruction of a CAD model from low-quality unoriented point clouds remains a significant challenge.
In this paper, we address this challenge based on the prior observation that the surface of a CAD model is generally composed of piecewise surface patches.
Our approach, named NeurCADRecon, is self-supervised and its loss includes a developability term to encourage the Gaussian curvature toward 0.
- Score: 42.39976072777987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent advances in reconstructing an organic model with the neural signed distance function (SDF), the high-fidelity reconstruction of a CAD model directly from low-quality unoriented point clouds remains a significant challenge. In this paper, we address this challenge based on the prior observation that the surface of a CAD model is generally composed of piecewise surface patches, each approximately developable even around the feature line. Our approach, named NeurCADRecon, is self-supervised, and its loss includes a developability term to encourage the Gaussian curvature toward 0 while ensuring fidelity to the input points. Noticing that the Gaussian curvature is non-zero at tip points, we introduce a double-trough curve to tolerate the existence of these tip points. Furthermore, we develop a dynamic sampling strategy to deal with situations where the given points are incomplete or too sparse. Since our resulting neural SDFs can clearly manifest sharp feature points/lines, one can easily extract the feature-aligned triangle mesh from the SDF and then decompose it into smooth surface patches, greatly reducing the difficulty of recovering the parametric CAD design. A comprehensive comparison with existing state-of-the-art methods shows the significant advantage of our approach in reconstructing faithful CAD shapes.
Related papers
- NeuVAS: Neural Implicit Surfaces for Variational Shape Modeling [54.06448198674519]
NeuVAS is a variational approach to shape modeling using neural implicit surfaces constrained under sparse input shape control.<n>We introduce a smoothness term based on a functional of surface curvatures to minimize shape variation of the zero-level set surface of a neural SDF.
arXiv Detail & Related papers (2025-06-16T02:39:45Z) - Point2Primitive: CAD Reconstruction from Point Cloud by Direct Primitive Prediction [21.252463825836497]
We propose a CAD reconstruction network that produces editable CAD models from input point clouds (Point2Primitive)<n>Point2Primitive can directly detect and predict sketch curves (type and parameter) from point clouds based on an improved transformer.
arXiv Detail & Related papers (2025-05-04T09:42:03Z) - SparseFlex: High-Resolution and Arbitrary-Topology 3D Shape Modeling [79.56581753856452]
SparseFlex is a novel sparse-structured isosurface representation that enables differentiable mesh reconstruction at resolutions up to $10243$ directly from rendering losses.
By enabling high-resolution, differentiable mesh reconstruction and generation with rendering losses, SparseFlex significantly advances the state-of-the-art in 3D shape representation and modeling.
arXiv Detail & Related papers (2025-03-27T17:46:42Z) - HessianForge: Scalable LiDAR reconstruction with Physics-Informed Neural Representation and Smoothness Energy Constraints [18.858320397002277]
Deep learning approach learns signed distance field from raw LiDAR point clouds.<n>Test-time refinement strategy to correct topological inconsistencies and edge distortions.<n>textttCUDA-accelerated least-squares optimization.
arXiv Detail & Related papers (2025-03-11T22:18:51Z) - MonoGSDF: Exploring Monocular Geometric Cues for Gaussian Splatting-Guided Implicit Surface Reconstruction [84.07233691641193]
We introduce MonoGSDF, a novel method that couples primitives with a neural Signed Distance Field (SDF) for high-quality reconstruction.
To handle arbitrary-scale scenes, we propose a scaling strategy for robust generalization.
Experiments on real-world datasets outperforms prior methods while maintaining efficiency.
arXiv Detail & Related papers (2024-11-25T20:07:07Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.
Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - SMORE: Simultaneous Map and Object REconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.
We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - 3D Neural Edge Reconstruction [61.10201396044153]
We introduce EMAP, a new method for learning 3D edge representations with a focus on both lines and curves.
Our method implicitly encodes 3D edge distance and direction in Unsigned Distance Functions (UDF) from multi-view edge maps.
On top of this neural representation, we propose an edge extraction algorithm that robustly abstracts 3D edges from the inferred edge points and their directions.
arXiv Detail & Related papers (2024-05-29T17:23:51Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
We propose a novel sparse view reconstruction framework that leverages on-surface priors to achieve highly faithful surface reconstruction.
Specifically, we design several constraints on global geometry alignment and local geometry refinement for jointly optimizing coarse shapes and fine details.
The experimental results with DTU and BlendedMVS datasets in two prevalent sparse settings demonstrate significant improvements over the state-of-the-art methods.
arXiv Detail & Related papers (2023-12-21T16:04:45Z) - Point2CAD: Reverse Engineering CAD Models from 3D Point Clouds [26.10631058349939]
We propose a hybrid analytic-neural reconstruction scheme that bridges the gap between segmented point clouds and structured CAD models.
We also propose a novel implicit neural representation of freeform surfaces, driving up the performance of our overall CAD reconstruction scheme.
arXiv Detail & Related papers (2023-12-07T08:23:44Z) - Neural-Singular-Hessian: Implicit Neural Representation of Unoriented
Point Clouds by Enforcing Singular Hessian [44.28251558359345]
We propose a new approach for reconstructing surfaces from point clouds.
Our technique aligns the gradients for a near-surface point and its on-surface projection point, producing a rough but faithful shape within just a few iterations.
arXiv Detail & Related papers (2023-09-04T20:10:38Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
We present D-NeuS, a volume rendering neural implicit surface reconstruction method capable to recover fine geometry details.
We impose multi-view feature consistency on the surface points, derived by interpolating SDF zero-crossings from sampled points along rays.
Our method reconstructs high-accuracy surfaces with details, and outperforms the state of the art.
arXiv Detail & Related papers (2022-11-21T10:06:09Z) - PVSeRF: Joint Pixel-, Voxel- and Surface-Aligned Radiance Field for
Single-Image Novel View Synthesis [52.546998369121354]
We present PVSeRF, a learning framework that reconstructs neural radiance fields from single-view RGB images.
We propose to incorporate explicit geometry reasoning and combine it with pixel-aligned features for radiance field prediction.
We show that the introduction of such geometry-aware features helps to achieve a better disentanglement between appearance and geometry.
arXiv Detail & Related papers (2022-02-10T07:39:47Z) - CAD-PU: A Curvature-Adaptive Deep Learning Solution for Point Set
Upsampling [33.61863896931608]
Point set upsampling aims to increase its density and regularity.
We identify the factors that are critical to the objective, by pairing the surface approximation error bounds of the input and output point sets.
We propose a novel design of Curvature-ADaptive Point set Upsampling network (CAD-PU), the core of which is a module of curvature-adaptive feature expansion.
arXiv Detail & Related papers (2020-09-10T04:03:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.