HessianForge: Scalable LiDAR reconstruction with Physics-Informed Neural Representation and Smoothness Energy Constraints
- URL: http://arxiv.org/abs/2503.08929v1
- Date: Tue, 11 Mar 2025 22:18:51 GMT
- Title: HessianForge: Scalable LiDAR reconstruction with Physics-Informed Neural Representation and Smoothness Energy Constraints
- Authors: Hrishikesh Viswanath, Md Ashiqur Rahman, Chi Lin, Damon Conover, Aniket Bera,
- Abstract summary: Deep learning approach learns signed distance field from raw LiDAR point clouds.<n>Test-time refinement strategy to correct topological inconsistencies and edge distortions.<n>textttCUDA-accelerated least-squares optimization.
- Score: 18.858320397002277
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and efficient 3D mapping of large-scale outdoor environments from LiDAR measurements is a fundamental challenge in robotics, particularly towards ensuring smooth and artifact-free surface reconstructions. Although the state-of-the-art methods focus on memory-efficient neural representations for high-fidelity surface generation, they often fail to produce artifact-free manifolds, with artifacts arising due to noisy and sparse inputs. To address this issue, we frame surface mapping as a physics-informed energy optimization problem, enforcing surface smoothness by optimizing an energy functional that penalizes sharp surface ridges. Specifically, we propose a deep learning based approach that learns the signed distance field (SDF) of the surface manifold from raw LiDAR point clouds using a physics-informed loss function that optimizes the $L_2$-Hessian energy of the surface. Our learning framework includes a hierarchical octree based input feature encoding and a multi-scale neural network to iteratively refine the signed distance field at different scales of resolution. Lastly, we introduce a test-time refinement strategy to correct topological inconsistencies and edge distortions that can arise in the generated mesh. We propose a \texttt{CUDA}-accelerated least-squares optimization that locally adjusts vertex positions to enforce feature-preserving smoothing. We evaluate our approach on large-scale outdoor datasets and demonstrate that our approach outperforms current state-of-the-art methods in terms of improved accuracy and smoothness. Our code is available at \href{https://github.com/HrishikeshVish/HessianForge/}{https://github.com/HrishikeshVish/HessianForge/}
Related papers
- Learning Bijective Surface Parameterization for Inferring Signed Distance Functions from Sparse Point Clouds with Grid Deformation [50.26314343851213]
Inferring signed distance functions (SDFs) from sparse point clouds remains a challenge in surface reconstruction.
We present a novel approach that learns a dynamic deformation network to predict SDFs in an end-to-end manner.
Experimental results on synthetic and real scanned datasets demonstrate that our method significantly outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2025-03-31T02:27:02Z) - Thin-Shell-SfT: Fine-Grained Monocular Non-rigid 3D Surface Tracking with Neural Deformation Fields [66.1612475655465]
3D reconstruction of deformable surfaces from RGB videos is a challenging problem.
Existing methods use deformation models with statistical, neural, or physical priors.
We propose ThinShell-SfT, a new method for non-rigid 3D tracking meshes.
arXiv Detail & Related papers (2025-03-25T18:00:46Z) - MVGSR: Multi-View Consistency Gaussian Splatting for Robust Surface Reconstruction [46.081262181141504]
3D Gaussian Splatting (3DGS) has gained significant attention for its high-quality rendering capabilities, ultra-fast training, and inference speeds.
We propose Multi-View Consistency Gaussian Splatting for the domain of Robust Surface Reconstruction (textbfMVGSR)
MVGSR achieves competitive geometric accuracy and rendering fidelity compared to the state-of-the-art surface reconstruction algorithms.
arXiv Detail & Related papers (2025-03-11T06:53:27Z) - NASM: Neural Anisotropic Surface Meshing [38.8654207201197]
This paper introduces a new learning-based method, NASM, for anisotropic surface meshing.
Key idea is to embed an input mesh into a high-d Euclidean embedding space to preserve curvature-based anisotropic metric.
Then, we propose a novel feature-sensitive remeshing on the generated high-d embedding to automatically capture sharp geometric features.
arXiv Detail & Related papers (2024-10-30T15:20:10Z) - SMORE: Simulataneous Map and Object REconstruction [66.66729715211642]
We present a method for dynamic surface reconstruction of large-scale urban scenes from LiDAR.<n>We take a holistic perspective and optimize a compositional model of a dynamic scene that decomposes the world into rigidly-moving objects and the background.
arXiv Detail & Related papers (2024-06-19T23:53:31Z) - Flatten Anything: Unsupervised Neural Surface Parameterization [76.4422287292541]
We introduce the Flatten Anything Model (FAM), an unsupervised neural architecture to achieve global free-boundary surface parameterization.
Compared with previous methods, our FAM directly operates on discrete surface points without utilizing connectivity information.
Our FAM is fully-automated without the need for pre-cutting and can deal with highly-complex topologies.
arXiv Detail & Related papers (2024-05-23T14:39:52Z) - ParaPoint: Learning Global Free-Boundary Surface Parameterization of 3D Point Clouds [52.03819676074455]
ParaPoint is an unsupervised neural learning pipeline for achieving global free-boundary surface parameterization.
This work makes the first attempt to investigate neural point cloud parameterization that pursues both global mappings and free boundaries.
arXiv Detail & Related papers (2024-03-15T14:35:05Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
We propose a novel sparse view reconstruction framework that leverages on-surface priors to achieve highly faithful surface reconstruction.
Specifically, we design several constraints on global geometry alignment and local geometry refinement for jointly optimizing coarse shapes and fine details.
The experimental results with DTU and BlendedMVS datasets in two prevalent sparse settings demonstrate significant improvements over the state-of-the-art methods.
arXiv Detail & Related papers (2023-12-21T16:04:45Z) - Flexible Isosurface Extraction for Gradient-Based Mesh Optimization [65.76362454554754]
This work considers gradient-based mesh optimization, where we iteratively optimize for a 3D surface mesh by representing it as the isosurface of a scalar field.
We introduce FlexiCubes, an isosurface representation specifically designed for optimizing an unknown mesh with respect to geometric, visual, or even physical objectives.
arXiv Detail & Related papers (2023-08-10T06:40:19Z) - Delicate Textured Mesh Recovery from NeRF via Adaptive Surface
Refinement [78.48648360358193]
We present a novel framework that generates textured surface meshes from images.
Our approach begins by efficiently initializing the geometry and view-dependency appearance with a NeRF.
We jointly refine the appearance with geometry and bake it into texture images for real-time rendering.
arXiv Detail & Related papers (2023-03-03T17:14:44Z) - Iso-Points: Optimizing Neural Implicit Surfaces with Hybrid
Representations [21.64457003420851]
We develop a hybrid neural surface representation that allows us to impose geometry-aware sampling and regularization.
We demonstrate that our method can be adopted to improve techniques for reconstructing neural implicit surfaces from multi-view images or point clouds.
arXiv Detail & Related papers (2020-12-11T15:51:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.