PristiQ: A Co-Design Framework for Preserving Data Security of Quantum Learning in the Cloud
- URL: http://arxiv.org/abs/2404.13475v1
- Date: Sat, 20 Apr 2024 22:03:32 GMT
- Title: PristiQ: A Co-Design Framework for Preserving Data Security of Quantum Learning in the Cloud
- Authors: Zhepeng Wang, Yi Sheng, Nirajan Koirala, Kanad Basu, Taeho Jung, Cheng-Chang Lu, Weiwen Jiang,
- Abstract summary: Cloud computing poses a high risk of data leakage in quantum machine learning (QML)
We propose a co-design framework for preserving the data security of QML with the Q paradigm, namely PristiQ.
- Score: 7.87660609586004
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benefiting from cloud computing, today's early-stage quantum computers can be remotely accessed via the cloud services, known as Quantum-as-a-Service (QaaS). However, it poses a high risk of data leakage in quantum machine learning (QML). To run a QML model with QaaS, users need to locally compile their quantum circuits including the subcircuit of data encoding first and then send the compiled circuit to the QaaS provider for execution. If the QaaS provider is untrustworthy, the subcircuit to encode the raw data can be easily stolen. Therefore, we propose a co-design framework for preserving the data security of QML with the QaaS paradigm, namely PristiQ. By introducing an encryption subcircuit with extra secure qubits associated with a user-defined security key, the security of data can be greatly enhanced. And an automatic search algorithm is proposed to optimize the model to maintain its performance on the encrypted quantum data. Experimental results on simulation and the actual IBM quantum computer both prove the ability of PristiQ to provide high security for the quantum data while maintaining the model performance in QML.
Related papers
- Security Concerns in Quantum Machine Learning as a Service [2.348041867134616]
Quantum machine learning (QML) is a category of algorithms that employ variational quantum circuits (VQCs) to tackle machine learning tasks.
Recent discoveries have shown that QML models can effectively generalize from limited training data samples.
QML represents a hybrid model that utilizes both classical and quantum computing resources.
arXiv Detail & Related papers (2024-08-18T18:21:24Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Harnessing Inherent Noises for Privacy Preservation in Quantum Machine
Learning [11.45148186874482]
We propose to harness inherent quantum noises to protect data privacy in quantum machine learning.
Especially, considering the Noisy Intermediate-Scale Quantum (NISQ) devices, we leverage the unavoidable shot noise and incoherent noise.
arXiv Detail & Related papers (2023-12-18T11:52:44Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
A Quantum Kernel Self-Attention Mechanism (QKSAM) is introduced to combine the data representation merit of Quantum Kernel Methods (QKM) with the efficient information extraction capability of SAM.
A Quantum Kernel Self-Attention Network (QKSAN) framework is proposed based on QKSAM, which ingeniously incorporates the Deferred Measurement Principle (DMP) and conditional measurement techniques.
Four QKSAN sub-models are deployed on PennyLane and IBM Qiskit platforms to perform binary classification on MNIST and Fashion MNIST.
arXiv Detail & Related papers (2023-08-25T15:08:19Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Simulation of Networked Quantum Computing on Encrypted Data [0.0]
cryptographic techniques must be developed for secure remote use of quantum computing power.
I present a simulation of such a protocol, tested classically on the simulation platform LIQ$Ui|rangle.
arXiv Detail & Related papers (2022-12-25T20:02:53Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Anti-Forging Quantum Data: Cryptographic Verification of Quantum
Computational Power [1.9737117321211988]
Quantum cloud computing is emerging as a popular model for users to experience the power of quantum computing through the internet.
How can users be sure that the output strings sent by the server are really from a quantum hardware?
arXiv Detail & Related papers (2020-05-04T14:28:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.