Quantum Quandaries: Unraveling Encoding Vulnerabilities in Quantum Neural Networks
- URL: http://arxiv.org/abs/2502.01486v1
- Date: Mon, 03 Feb 2025 16:21:16 GMT
- Title: Quantum Quandaries: Unraveling Encoding Vulnerabilities in Quantum Neural Networks
- Authors: Suryansh Upadhyay, Swaroop Ghosh,
- Abstract summary: This work demonstrates that adversaries in quantum cloud environments can exploit white box access to QML models.
We report that 95% of the time, the encoding can be predicted correctly.
To mitigate this threat, we propose a transient obfuscation layer that masks encoding fingerprints.
- Score: 2.348041867134616
- License:
- Abstract: Quantum computing (QC) has the potential to revolutionize fields like machine learning, security, and healthcare. Quantum machine learning (QML) has emerged as a promising area, enhancing learning algorithms using quantum computers. However, QML models are lucrative targets due to their high training costs and extensive training times. The scarcity of quantum resources and long wait times further exacerbate the challenge. Additionally, QML providers may rely on third party quantum clouds for hosting models, exposing them and their training data to potential threats. As QML as a Service (QMLaaS) becomes more prevalent, reliance on third party quantum clouds poses a significant security risk. This work demonstrates that adversaries in quantum cloud environments can exploit white box access to QML models to infer the users encoding scheme by analyzing circuit transpilation artifacts. The extracted data can be reused for training clone models or sold for profit. We validate the proposed attack through simulations, achieving high accuracy in distinguishing between encoding schemes. We report that 95% of the time, the encoding can be predicted correctly. To mitigate this threat, we propose a transient obfuscation layer that masks encoding fingerprints using randomized rotations and entanglement, reducing adversarial detection to near random chance 42% , with a depth overhead of 8.5% for a 5 layer QNN design.
Related papers
- Adversarial Poisoning Attack on Quantum Machine Learning Models [2.348041867134616]
We introduce a quantum indiscriminate data poisoning attack, QUID.
QUID achieves up to $92%$ accuracy degradation in model performance compared to baseline models.
We also tested QUID against state-of-the-art classical defenses, with accuracy degradation still exceeding $50%$.
arXiv Detail & Related papers (2024-11-21T18:46:45Z) - AI-driven Reverse Engineering of QML Models [2.348041867134616]
One of the most pressing risks is the potential for reverse engineering (RE) by malicious actors.
We introduce an autoencoder-based approach to extract the parameters from transpiled QML models deployed on untrusted third-party vendors.
arXiv Detail & Related papers (2024-08-29T22:08:07Z) - Quantum Data Breach: Reusing Training Dataset by Untrusted Quantum Clouds [2.348041867134616]
We show that adversaries in quantum clouds can use white-box access of the QML model during training to extract the labels.
The extracted training data can be reused for training a clone model or sold for profit.
We propose a suite of techniques to prune and fix the incorrect labels.
arXiv Detail & Related papers (2024-07-19T22:06:34Z) - The Quantum Imitation Game: Reverse Engineering of Quantum Machine Learning Models [2.348041867134616]
Quantum Machine Learning (QML) amalgamates quantum computing paradigms with machine learning models.
With the expansion of numerous third-party vendors in the Noisy Intermediate-Scale Quantum (NISQ) era of quantum computing, the security of QML models is of prime importance.
We assume the untrusted quantum cloud provider is an adversary having white-box access to the transpiled user-designed trained QML model during inference.
arXiv Detail & Related papers (2024-07-09T21:35:19Z) - PristiQ: A Co-Design Framework for Preserving Data Security of Quantum Learning in the Cloud [7.87660609586004]
Cloud computing poses a high risk of data leakage in quantum machine learning (QML)
We propose a co-design framework for preserving the data security of QML with the Q paradigm, namely PristiQ.
arXiv Detail & Related papers (2024-04-20T22:03:32Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Delegated variational quantum algorithms based on quantum homomorphic
encryption [69.50567607858659]
Variational quantum algorithms (VQAs) are one of the most promising candidates for achieving quantum advantages on quantum devices.
The private data of clients may be leaked to quantum servers in such a quantum cloud model.
A novel quantum homomorphic encryption (QHE) scheme is constructed for quantum servers to calculate encrypted data.
arXiv Detail & Related papers (2023-01-25T07:00:13Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCS aims at index searching and counting in a quantum-classical hybrid system.
We implement IQuCS with Qiskit and conduct intensive experiments.
Results demonstrate that it reduces qubits consumption by up to 66.2%.
arXiv Detail & Related papers (2022-09-22T21:54:28Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - On the learnability of quantum neural networks [132.1981461292324]
We consider the learnability of the quantum neural network (QNN) built on the variational hybrid quantum-classical scheme.
We show that if a concept can be efficiently learned by QNN, then it can also be effectively learned by QNN even with gate noise.
arXiv Detail & Related papers (2020-07-24T06:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.