論文の概要: Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces
- arxiv url: http://arxiv.org/abs/2404.13521v1
- Date: Sun, 21 Apr 2024 04:06:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 18:40:56.608168
- Title: Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces
- Title(参考訳): Graph4GUI: グラフィカルユーザインタフェースを表現するグラフニューラルネットワーク
- Authors: Yue Jiang, Changkong Zhou, Vikas Garg, Antti Oulasvirta,
- Abstract要約: Graph4GUIはグラフニューラルネットワークを利用して、個々の要素の特性とセマンティックな空間的制約をレイアウトでキャプチャする。
学習された表現は、その効果を複数のタスクで示し、特に挑戦的なGUIオートコンプリートタスクで設計を生成する。
- 参考スコア(独自算出の注目度): 27.84098739594353
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Present-day graphical user interfaces (GUIs) exhibit diverse arrangements of text, graphics, and interactive elements such as buttons and menus, but representations of GUIs have not kept up. They do not encapsulate both semantic and visuo-spatial relationships among elements. To seize machine learning's potential for GUIs more efficiently, Graph4GUI exploits graph neural networks to capture individual elements' properties and their semantic-visuo-spatial constraints in a layout. The learned representation demonstrated its effectiveness in multiple tasks, especially generating designs in a challenging GUI autocompletion task, which involved predicting the positions of remaining unplaced elements in a partially completed GUI. The new model's suggestions showed alignment and visual appeal superior to the baseline method and received higher subjective ratings for preference. Furthermore, we demonstrate the practical benefits and efficiency advantages designers perceive when utilizing our model as an autocompletion plug-in.
- Abstract(参考訳): 現在のGUIは、テキスト、グラフィック、ボタンやメニューなどのインタラクティブな要素を多種多様な配置で表現しているが、GUIの表現は維持されていない。
彼らは要素間の意味的関係と空間的関係の両方をカプセル化しない。
機械学習によるGUIの可能性をより効率的に把握するために、Graph4GUIはグラフニューラルネットワークを利用して、個々の要素のプロパティとそれらのセマンティック視覚空間的制約をレイアウトでキャプチャする。
学習された表現は、その効果を複数のタスクで示し、特に、部分的に完成したGUIで残されている未配置要素の位置を予測する挑戦的なGUIオートコンプリートタスクで設計を生成する。
新しいモデルの提案は、基準法よりもアライメントと視覚的魅力を示し、嗜好に対して高い主観的評価を受けた。
さらに,自動補完プラグインとしてモデルを利用する場合,設計者が認識する実用的メリットと効率性について述べる。
関連論文リスト
- ShowUI: One Vision-Language-Action Model for GUI Visual Agent [80.50062396585004]
グラフィカルユーザインタフェース(GUI)アシスタントの構築は、人間のワークフロー生産性を向上させるための大きな約束である。
デジタルワールドにおける視覚言語アクションモデル、すなわちShowUIを開発し、以下のイノベーションを特徴とする。
256Kデータを使用した軽量な2BモデルであるShowUIは、ゼロショットのスクリーンショットグラウンドで75.1%の精度を実現している。
論文 参考訳(メタデータ) (2024-11-26T14:29:47Z) - Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents [20.08996257335876]
環境を視覚的に完全に知覚し,GUI上でのピクセルレベルの操作を直接行う,GUIエージェントのためのヒューマンライクなエボディメントを提唱する。
これまでに10MのGUI要素と参照式を1.3Mのスクリーンショット上に収めた、GUIの視覚的接地のための最大のデータセットを収集しました。
ウェブベースの合成データとLLaVAアーキテクチャの若干の適応を含む簡単なレシピは、このような視覚的接地モデルのトレーニングに驚くほど効果的であることを示す。
論文 参考訳(メタデータ) (2024-10-07T17:47:50Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
GUICourseは、ビジュアルベースのGUIエージェントをトレーニングするためのデータセットスイートです。
まず、OCRとVLMのグラウンド機能を強化するためにGUIEnvデータセットを導入する。
次にGUIActとGUIChatデータセットを導入し、GUIコンポーネントやインタラクションに関する知識を充実させます。
論文 参考訳(メタデータ) (2024-06-17T08:30:55Z) - GUI-WORLD: A Dataset for GUI-oriented Multimodal LLM-based Agents [73.9254861755974]
本稿では,人間のMLLMアノテーションを巧みに作成するGUI-Worldという新しいデータセットを提案する。
各種GUIコンテンツの理解において,ImageLLMs や VideoLLMs などの最先端MLLMの能力を評価する。
論文 参考訳(メタデータ) (2024-06-16T06:56:53Z) - VideoGUI: A Benchmark for GUI Automation from Instructional Videos [78.97292966276706]
VideoGUIは、ビジュアル中心のGUIタスクでGUIアシスタントを評価するために設計された、新しいマルチモーダルベンチマークである。
高品質なWebインストラクショナルビデオから得られたベンチマークは、プロフェッショナルと新しいソフトウェアに関わるタスクに焦点を当てている。
評価の結果,SoTAの大規模マルチモーダルモデルであるGPT4oでさえ,視覚中心のGUIタスクでは不十分であることが判明した。
論文 参考訳(メタデータ) (2024-06-14T17:59:08Z) - From Pixels to UI Actions: Learning to Follow Instructions via Graphical
User Interfaces [66.85108822706489]
本稿では,人間がよく使う概念的インタフェースを用いて,デジタル世界と対話するエージェントを作成することに焦点を当てる。
このようなエージェントは、タスクに従うGUIベースの命令のMiniWob++ベンチマークで、人間のクラウドワーカーより優れています。
論文 参考訳(メタデータ) (2023-05-31T23:39:18Z) - GUILGET: GUI Layout GEneration with Transformer [26.457270239234383]
目標は、現実的で多様なGUIレイアウトを生成することで、GUI設計の最初のステップをサポートすることである。
GUILGETは、GUI-AGの要素間の関係のセマンティクスをキャプチャするために、トランスフォーマーに基づいている。
CLAYデータセットを用いて実験を行った結果,GUI-AGから関係を最もよく理解したモデルであることが判明した。
論文 参考訳(メタデータ) (2023-04-18T14:27:34Z) - Psychologically-Inspired, Unsupervised Inference of Perceptual Groups of
GUI Widgets from GUI Images [21.498096538797952]
本稿では,GUIウィジェットの知覚群を推定するための教師なし画像ベース手法を提案する。
772個のモバイルアプリと20個のUIデザインモックアップから収集した1,091個のGUIのデータセットによる評価は、我々の手法が最先端のアドホックベースのベースラインを大幅に上回っていることを示している。
論文 参考訳(メタデータ) (2022-06-15T05:16:03Z) - Object Detection for Graphical User Interface: Old Fashioned or Deep
Learning or a Combination? [21.91118062303175]
我々は,50k以上のGUI画像上で7つの代表的GUI要素検出手法について,大規模な実証的研究を行った。
本研究は、解決すべき技術的課題に光を当て、新しいGUI要素検出手法の設計について報告する。
25,000個のGUI画像に対する評価は,GUI要素検出における最先端性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2020-08-12T06:36:33Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
グラフ表現学習は現実世界の問題に対処する強力な手法として登場した。
自己教師付きグラフニューラルネットワーク事前トレーニングフレームワークであるGraph Contrastive Codingを設計する。
3つのグラフ学習タスクと10のグラフデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-06-17T16:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。