論文の概要: Fermi-Bose Machine
- arxiv url: http://arxiv.org/abs/2404.13631v1
- Date: Sun, 21 Apr 2024 12:11:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 18:11:42.965380
- Title: Fermi-Bose Machine
- Title(参考訳): Fermi-Bose マシン
- Authors: Mingshan Xie, Yuchen Wang, Haiping Huang,
- Abstract要約: 意味的に意味のある表現学習を提案し,同じラベルを持つ入力の表現を隠蔽層に縮小し,異なるラベルの表現を退避させる(フェルミオンに限る)。
この階層的な学習は自然界において局所的であり、生物学的に妥当である。
この局所的コントラスト学習をMNISTベンチマークデータセットに適用することにより、標準パーセプトロンの敵的脆弱性を大幅に軽減できることを示す。
- 参考スコア(独自算出の注目度): 8.201224848190753
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Distinct from human cognitive processing, deep neural networks trained by backpropagation can be easily fooled by adversarial examples. To design a semantically meaningful representation learning, we discard backpropagation, and instead, propose a local contrastive learning, where the representation for the inputs bearing the same label shrink (akin to boson) in hidden layers, while those of different labels repel (akin to fermion). This layer-wise learning is local in nature, being biological plausible. A statistical mechanics analysis shows that the target fermion-pair-distance is a key parameter. Moreover, the application of this local contrastive learning to MNIST benchmark dataset demonstrates that the adversarial vulnerability of standard perceptron can be greatly mitigated by tuning the target distance, i.e., controlling the geometric separation of prototype manifolds.
- Abstract(参考訳): 人間の認知処理とは違い、バックプロパゲーションによって訓練されたディープニューラルネットワークは、敵対的な例によって容易に騙される。
意味的に意味のある表現学習を設計するために、バックプロパゲーションを廃止し、代わりに、同じラベルを持つ入力の表現が、異なるラベルを持つもの(フェルミオンに類似)に対して、隠れた層で収縮する(ボソンに類似)ローカルコントラスト学習を提案する。
この階層的な学習は自然界において局所的であり、生物学的に妥当である。
統計力学解析により、ターゲットフェルミオン対距離が重要なパラメータであることが示された。
さらに、MNISTベンチマークデータセットへのこの局所的コントラスト学習の適用により、標準パーセプトロンの対角的脆弱性は、ターゲット距離、すなわち、プロトタイプ多様体の幾何学的分離を制御することによって、大幅に緩和できることが示される。
関連論文リスト
- Self-Supervised Representation Learning for Adversarial Attack Detection [6.528181610035978]
教師付き学習に基づく敵攻撃検出手法は,多数のラベル付きデータに依存している。
この欠点に対処するために、敵攻撃検出タスクのための自己教師付き表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-05T09:37:16Z) - QGait: Toward Accurate Quantization for Gait Recognition with Binarized Input [17.017127559393398]
バックプロパゲーション時の円関数の勾配をよりよくシミュレートする,微分可能なソフト量子化器を提案する。
これにより、ネットワークは微妙な入力摂動から学習することができる。
量子化エラーをシミュレートしながら収束を確保するためのトレーニング戦略をさらに洗練する。
論文 参考訳(メタデータ) (2024-05-22T17:34:18Z) - Adaptive Face Recognition Using Adversarial Information Network [57.29464116557734]
顔認識モデルは、トレーニングデータがテストデータと異なる場合、しばしば退化する。
本稿では,新たな敵情報ネットワーク(AIN)を提案する。
論文 参考訳(メタデータ) (2023-05-23T02:14:11Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
対向ロバスト性の標準的な方法は、サンプルを最小に摂動させることによって作られたサンプルに対して防御する枠組みを仮定する。
距離学習を用いて、最適輸送問題として逆正則化をフレーム化する。
予備的な結果から, 変分摂動の規則化は, 変分防御と敏感防御の両方を改善することが示唆された。
論文 参考訳(メタデータ) (2022-11-04T13:54:02Z) - Learning-based Hybrid Local Search for the Hard-label Textual Attack [53.92227690452377]
我々は,攻撃者が予測ラベルにのみアクセス可能な,滅多に調査されていないが厳格な設定,すなわちハードラベル攻撃を考える。
そこで本研究では,Learning-based Hybrid Local Search (LHLS)アルゴリズムという,新たなハードラベル攻撃を提案する。
我々のLHLSは、攻撃性能と敵の品質に関する既存のハードラベル攻撃を著しく上回っている。
論文 参考訳(メタデータ) (2022-01-20T14:16:07Z) - Modelling Adversarial Noise for Adversarial Defense [96.56200586800219]
敵の防御は、通常、敵の音を除去したり、敵の頑強な目標モデルを訓練するために、敵の例を活用することに焦点を当てる。
逆データと自然データの関係は、逆データからクリーンデータを推測し、最終的な正しい予測を得るのに役立ちます。
本研究では, ラベル空間の遷移関係を学習するために, 逆方向の雑音をモデル化し, 逆方向の精度を向上させることを目的とした。
論文 参考訳(メタデータ) (2021-09-21T01:13:26Z) - Generating Out of Distribution Adversarial Attack using Latent Space
Poisoning [5.1314136039587925]
本稿では,実際の画像が破損しない敵の例を生成する新しいメカニズムを提案する。
潜在空間表現は、画像の固有構造を改ざんするために利用される。
勾配ベースの攻撃とは対照的に、潜時空間中毒は、トレーニングデータセットの独立かつ同一分布をモデル化する分類器の傾きを利用する。
論文 参考訳(メタデータ) (2020-12-09T13:05:44Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
既存の対数学習アプローチは、主にクラスラベルを使用して、誤った予測につながる対数サンプルを生成する。
本稿では,未ラベルデータに対する新たな逆攻撃を提案する。これにより,モデルが摂動データサンプルのインスタンスレベルのアイデンティティを混乱させる。
ラベル付きデータなしで頑健なニューラルネットワークを逆さまにトレーニングするための,自己教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-13T08:24:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。