論文の概要: Distributional Principal Autoencoders
- arxiv url: http://arxiv.org/abs/2404.13649v1
- Date: Sun, 21 Apr 2024 12:52:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 18:01:50.408532
- Title: Distributional Principal Autoencoders
- Title(参考訳): 分散主オートエンコーダ
- Authors: Xinwei Shen, Nicolai Meinshausen,
- Abstract要約: 次元減少技術は通常、再構成されたデータが元のデータと同一でないという意味で情報を失う。
本稿では,高次元データを低次元潜在変数にマッピングするエンコーダからなる分散主オートエンコーダ(DPA)を提案する。
データを再構成するために、DPAデコーダは、ある潜在値にマッピングされたすべてのデータの条件分布に一致させることを目的としている。
- 参考スコア(独自算出の注目度): 2.519266955671697
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dimension reduction techniques usually lose information in the sense that reconstructed data are not identical to the original data. However, we argue that it is possible to have reconstructed data identically distributed as the original data, irrespective of the retained dimension or the specific mapping. This can be achieved by learning a distributional model that matches the conditional distribution of data given its low-dimensional latent variables. Motivated by this, we propose Distributional Principal Autoencoder (DPA) that consists of an encoder that maps high-dimensional data to low-dimensional latent variables and a decoder that maps the latent variables back to the data space. For reducing the dimension, the DPA encoder aims to minimise the unexplained variability of the data with an adaptive choice of the latent dimension. For reconstructing data, the DPA decoder aims to match the conditional distribution of all data that are mapped to a certain latent value, thus ensuring that the reconstructed data retains the original data distribution. Our numerical results on climate data, single-cell data, and image benchmarks demonstrate the practical feasibility and success of the approach in reconstructing the original distribution of the data. DPA embeddings are shown to preserve meaningful structures of data such as the seasonal cycle for precipitations and cell types for gene expression.
- Abstract(参考訳): 次元減少技術は通常、再構成されたデータが元のデータと同一でないという意味で情報を失う。
しかし,保持次元や特定のマッピングに関わらず,元のデータと同一に分散したデータを再構成することは可能であると論じる。
これは、低次元潜在変数からデータの状態分布に一致する分布モデルを学ぶことで実現できる。
そこで本研究では,高次元データを低次元潜在変数にマッピングするエンコーダと,遅延変数をデータ空間にマッピングするデコーダからなる分散主オートエンコーダ(DPA)を提案する。
次元を小さくするために、DPAエンコーダは、遅延次元の適応的な選択で、説明できないデータの変動を最小限にすることを目的としている。
データを再構成するために、DPAデコーダは、ある潜在値にマッピングされた全てのデータの条件分布に一致させることを目標とし、再構成されたデータが元のデータ分布を保持することを保証する。
気候データ, 単細胞データ, 画像ベンチマークの数値計算結果から, 元の分布を再構築する上でのアプローチの実現可能性, 成功例が示された。
DPA埋め込みは、降水の季節周期や遺伝子発現のための細胞タイプなど、データの有意義な構造を保っていることが示されている。
関連論文リスト
- Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks [7.958528596692594]
我々は、潜伏ワッサーシュタインガン(LWGAN)と呼ばれる新しい枠組みを提案する。
ワッサーシュタイン自己エンコーダとワッサーシュタイン GANを融合させ、データ多様体の内在次元を適応的に学習できるようにする。
我々は,LWGANが複数のシナリオにおいて,正しい固有次元を識別可能であることを示す。
論文 参考訳(メタデータ) (2024-09-27T01:25:22Z) - Geometry-Aware Instrumental Variable Regression [56.16884466478886]
本稿では,データ導出情報によるデータ多様体の幾何を考慮した移動型IV推定器を提案する。
本手法のプラグイン・アンド・プレイ実装は,標準設定で関連する推定器と同等に動作する。
論文 参考訳(メタデータ) (2024-05-19T17:49:33Z) - DIRESA, a distance-preserving nonlinear dimension reduction technique based on regularized autoencoders [0.0]
気象学では、過去のデータセットで類似した気象パターンやアナログを見つけることは、データの同化、予測、後処理に有用である。
気候科学において、歴史的および気候予測データのアナログは帰属研究や影響研究に使用される。
本稿では,オートエンコーダ(AE)ニューラルネットワークを用いた次元削減手法を提案し,これらのデータセットを圧縮し,解釈可能な圧縮潜在空間で探索を行う。
論文 参考訳(メタデータ) (2024-04-28T20:54:57Z) - Distribution-Aware Data Expansion with Diffusion Models [55.979857976023695]
本研究では,分散型拡散モデルに基づくトレーニングフリーなデータ拡張フレームワークであるDistDiffを提案する。
DistDiffは、オリジナルデータのみにトレーニングされたモデルと比較して、さまざまなデータセットの精度を一貫して向上させる。
論文 参考訳(メタデータ) (2024-03-11T14:07:53Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - On the Size and Approximation Error of Distilled Sets [57.61696480305911]
カーネル・インジェクション・ポイント(Kernel Inducing Points)などのデータセット蒸留のカーネル・リッジ回帰に基づく手法について理論的に考察する。
我々は、RFF空間におけるその解が元のデータの解と一致するように、元の入力空間に小さな一組のインスタンスが存在することを証明した。
KRR溶液は、全入力データに最適化されたKRR溶液に対して近似を与えるこの蒸留されたインスタンスセットを用いて生成することができる。
論文 参考訳(メタデータ) (2023-05-23T14:37:43Z) - Dataset Condensation with Latent Space Knowledge Factorization and
Sharing [73.31614936678571]
与えられたデータセットの規則性を利用してデータセットの凝縮問題を解決する新しい手法を提案する。
データセットを元の入力空間に直接凝縮するのではなく、学習可能な一連のコードでデータセットの生成プロセスを仮定する。
提案手法は,様々なベンチマークデータセットに対して,有意なマージンで新しい最先端記録を達成できることを実験的に示す。
論文 参考訳(メタデータ) (2022-08-21T18:14:08Z) - RENs: Relevance Encoding Networks [0.0]
本稿では,遅延空間に先行する自動相対性決定(ARD)を用いて,データ固有のボトルネック次元を学習する新しい確率的VOEベースのフレームワークであるrelevance encoding network (RENs)を提案する。
提案モデルは,サンプルの表現や生成品質を損なうことなく,関連性のあるボトルネック次元を学習することを示す。
論文 参考訳(メタデータ) (2022-05-25T21:53:48Z) - Generative Model without Prior Distribution Matching [26.91643368299913]
変分オートエンコーダ(VAE)とその変分は、いくつかの先行分布を満たすために低次元の潜在表現を学習することによって古典的な生成モデルである。
我々は、先行変数に適合させるのではなく、先行変数が埋め込み分布と一致するように提案する。
論文 参考訳(メタデータ) (2020-09-23T09:33:24Z) - Learning a Deep Part-based Representation by Preserving Data
Distribution [21.13421736154956]
教師なし次元減少は、高次元データ認識問題において一般的に用いられる技法の1つである。
本稿では,データ分布を保存することにより,深部部分に基づく表現を学習し,新しいアルゴリズムを分散保存ネットワーク埋め込みと呼ぶ。
実世界のデータセットにおける実験結果から,提案アルゴリズムはクラスタ精度とAMIの点で優れた性能を示した。
論文 参考訳(メタデータ) (2020-09-17T12:49:36Z) - Graph Embedding with Data Uncertainty [113.39838145450007]
スペクトルベースのサブスペース学習は、多くの機械学習パイプラインにおいて、一般的なデータ前処理ステップである。
ほとんどの部分空間学習法は、不確実性の高いデータにつながる可能性のある測定の不正確さやアーティファクトを考慮していない。
論文 参考訳(メタデータ) (2020-09-01T15:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。