Tripartite multiphoton Jaynes-Cummings model: Analytical solution and Wigner nonclassicalities
- URL: http://arxiv.org/abs/2404.13658v2
- Date: Wed, 15 Jan 2025 15:20:02 GMT
- Title: Tripartite multiphoton Jaynes-Cummings model: Analytical solution and Wigner nonclassicalities
- Authors: Pradip Laha, P. A. Ameen Yasir, Peter van Loock,
- Abstract summary: We analytically trace the temporal evolution of a tripartite pure initial state using nonlinear multiphoton Jaynes-Cummings interactions.
We produce substantial enhancements in the initial value for higher photon number states.
The additional nonlinearity introduced by the multiphoton process plays a pivotal role in surpassing the initial nonclassicalities of the photon number states.
- Score: 0.0
- License:
- Abstract: We investigate a generic tripartite quantum system featuring a single qubit interacting concurrently with two quantized harmonic oscillators via nonlinear multiphoton Jaynes-Cummings (MPJC) interactions. Assuming the qubit is initially prepared in a superposition state and the two oscillators are in arbitrary Fock states, we analytically trace the temporal evolution of this tripartite pure initial state. We identify four broad cases, each further divided into two subcases, and derive exact analytical solutions for most cases. Notably, we obtain perfect transfer of excitations between the oscillators by carefully selecting system parameters. In addition, we extensively examine the manner in which the nonclassicalities of various initial oscillator Fock states, quantified by the volume of negative regions in the associated Wigner functions, evolve under the MPJC Hamiltonian, considering diverse system parameters including environmental effects. Besides producing substantial enhancements in the initial value for higher photon number states, our analysis reveals that driven solely by the initial qubit energy, with both oscillators initialized in the vacuum state, the nonlinear MPJC interaction yields a significant amount of nontrivial Wigner negativity in the oscillators. The additional nonlinearity introduced by the multiphoton process plays a pivotal role in surpassing the initial nonclassicalities of the photon number states.
Related papers
- Experimental demonstration of spontaneous symmetry breaking with emergent multi-qubit entanglement [10.791982177923412]
Spontaneous symmetry breaking ( SSB) is crucial to the occurrence of phase transitions.
We present an experimental demonstration of the SSB process in the Lipkin-Meshkov-Glick model.
The observed nonclassical correlations among these qubits in the symmetry-breaking region go beyond the conventional description of SSB.
arXiv Detail & Related papers (2024-07-17T13:50:29Z) - How single-photon nonlinearity is quenched with multiple quantum
emitters: Quantum Zeno effect in collective interactions with $\Lambda$-level
atoms [49.1574468325115]
We show that the single-photon nonlinearity vanishes with the number of emitters.
The mechanism behind this behavior is the quantum Zeno effect, manifested in the slowdown of the photon-controlled dynamics.
arXiv Detail & Related papers (2024-01-13T06:55:18Z) - Quantifying nonclassicality of vacuum-one-photon superpositions via
potentials for Bell nonlocality, quantum steering, and entanglement [0.0]
Entanglement potentials are popular measures of the nonclassicality of single-mode optical fields.
We generalize this concept to define the potentials for Bell nonlocality and quantum steering.
Although we focus on the analysis of VOPS states, single-mode potentials can also be applied to study the nonclassicality of qudits or continuous-variable systems.
arXiv Detail & Related papers (2023-09-22T15:28:37Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Dissipative phase transitions in $n$-photon driven quantum nonlinear
resonators [0.0]
We show that for all odd $n$, no second-order DPT can occur while, for even $n$, the competition between higher-order nonlinearities determines the nature of the criticality.
We also show a first-order DPT where multiple solutions emerge around zero, low, and high-photon numbers.
Our results highlight the crucial role played by strong and weak symmetries in triggering critical behaviors, providing a Liouvillian framework to study the effects of high-order nonlinear processes in driven-dissipative systems.
arXiv Detail & Related papers (2023-03-06T18:42:13Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Generalization of the Tavis-Cummings model for multi-level anharmonic
systems: insights on the second excitation manifold [0.0]
This work contrasts predictions from the Tavis-Cummings (TC) model, in which the material is a collection of two-level systems.
We simplify the brute-force diagonalization of a gigantic $N2times N2$ Hamiltonian.
We find resonant conditions between bipolaritons and anharmonic transitions where two-photon absorption can be enhanced.
arXiv Detail & Related papers (2022-02-03T06:33:42Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Exact $k$-body representation of the Jaynes-Cummings interaction in the
dressed basis: Insight into many-body phenomena with light [0.0]
We present a non-perturbative procedure for transforming the JC Hamiltonian into a dressed operator representation.
This work is intended to serve as a clear mathematical exposition of bosonic many-body interactions underlying JC-type systems.
arXiv Detail & Related papers (2021-03-12T23:21:12Z) - Generalization of Second-Order Quasi-Phase Matching in Whispering
Gallery Mode Resonators Using Berry Phase [77.34726150561087]
Second order nonlinearities in whispering gallery mode resonators are investigated for their many applications.
We first detail the case of Zinc-blende materials and then generalize this theory to other crystal symmetries relevant for integrated photonics.
arXiv Detail & Related papers (2020-06-23T12:35:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.