Resampling-free Particle Filters in High-dimensions
- URL: http://arxiv.org/abs/2404.13698v1
- Date: Sun, 21 Apr 2024 15:53:06 GMT
- Title: Resampling-free Particle Filters in High-dimensions
- Authors: Akhilan Boopathy, Aneesh Muppidi, Peggy Yang, Abhiram Iyer, William Yue, Ila Fiete,
- Abstract summary: In high-dimensional state spaces, particle filters face challenges such as 'particle deprivation' which hinders accurate representation of the true posterior distribution.
This paper introduces a novel resampling-free particle filter designed to mitigate particle deprivation by forgoing the traditional resampling step.
Theoretically, our proposed filter is shown to offer a near-accurate representation of the desired posterior distribution in high-dimensional contexts.
- Score: 8.878254892409005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State estimation is crucial for the performance and safety of numerous robotic applications. Among the suite of estimation techniques, particle filters have been identified as a powerful solution due to their non-parametric nature. Yet, in high-dimensional state spaces, these filters face challenges such as 'particle deprivation' which hinders accurate representation of the true posterior distribution. This paper introduces a novel resampling-free particle filter designed to mitigate particle deprivation by forgoing the traditional resampling step. This ensures a broader and more diverse particle set, especially vital in high-dimensional scenarios. Theoretically, our proposed filter is shown to offer a near-accurate representation of the desired posterior distribution in high-dimensional contexts. Empirically, the effectiveness of our approach is underscored through a high-dimensional synthetic state estimation task and a 6D pose estimation derived from videos. We posit that as robotic systems evolve with greater degrees of freedom, particle filters tailored for high-dimensional state spaces will be indispensable.
Related papers
- Closed-form Filtering for Non-linear Systems [83.91296397912218]
We propose a new class of filters based on Gaussian PSD Models, which offer several advantages in terms of density approximation and computational efficiency.
We show that filtering can be efficiently performed in closed form when transitions and observations are Gaussian PSD Models.
Our proposed estimator enjoys strong theoretical guarantees, with estimation error that depends on the quality of the approximation and is adaptive to the regularity of the transition probabilities.
arXiv Detail & Related papers (2024-02-15T08:51:49Z) - Nonlinear Filtering with Brenier Optimal Transport Maps [4.745059103971596]
This paper is concerned with the problem of nonlinear filtering, i.e., computing the conditional distribution of the state of a dynamical system.
Conventional sequential importance resampling (SIR) particle filters suffer from fundamental limitations, in scenarios involving degenerate likelihoods or high-dimensional states.
In this paper, we explore an alternative method, which is based on estimating the Brenier optimal transport (OT) map from the current prior distribution of the state to the posterior distribution at the next time step.
arXiv Detail & Related papers (2023-10-21T01:34:30Z) - Counter-Hypothetical Particle Filters for Single Object Pose Tracking [10.232121085973784]
We introduce a Counter-Hypothetical likelihood function, which is used alongside the standard likelihood.
Inspired by the notions of plausibility and implausibility from Evidential Reasoning, the addition of our Counter-Hypothetical likelihood function assigns a level of doubt to each particle.
We demonstrate the effectiveness of our method on the rigid body object 6D pose tracking task.
arXiv Detail & Related papers (2023-05-28T23:42:35Z) - An overview of differentiable particle filters for data-adaptive
sequential Bayesian inference [19.09640071505051]
Particle filters (PFs) provide an efficient mechanism for solving non-linear sequential state estimation problems.
An emerging trend involves constructing components of particle filters using neural networks and optimising them by gradient descent.
Differentiable particle filters are a promising computational tool for performing inference on sequential data in complex, high-dimensional tasks.
arXiv Detail & Related papers (2023-02-19T18:03:53Z) - Computational Doob's h-transforms for Online Filtering of Discretely
Observed Diffusions [65.74069050283998]
We propose a computational framework to approximate Doob's $h$-transforms.
The proposed approach can be orders of magnitude more efficient than state-of-the-art particle filters.
arXiv Detail & Related papers (2022-06-07T15:03:05Z) - Super-resolution GANs of randomly-seeded fields [68.8204255655161]
We propose a novel super-resolution generative adversarial network (GAN) framework to estimate field quantities from random sparse sensors.
The algorithm exploits random sampling to provide incomplete views of the high-resolution underlying distributions.
The proposed technique is tested on synthetic databases of fluid flow simulations, ocean surface temperature distributions measurements, and particle image velocimetry data.
arXiv Detail & Related papers (2022-02-23T18:57:53Z) - Fourier Series Expansion Based Filter Parametrization for Equivariant
Convolutions [73.33133942934018]
2D filter parametrization technique plays an important role when designing equivariant convolutions.
New equivariant convolution method based on the proposed filter parametrization method, named F-Conv.
F-Conv evidently outperforms previous filter parametrization based method in image super-resolution task.
arXiv Detail & Related papers (2021-07-30T10:01:52Z) - Innovative And Additive Outlier Robust Kalman Filtering With A Robust
Particle Filter [68.8204255655161]
We propose CE-BASS, a particle mixture Kalman filter which is robust to both innovative and additive outliers, and able to fully capture multi-modality in the distribution of the hidden state.
Furthermore, the particle sampling approach re-samples past states, which enables CE-BASS to handle innovative outliers which are not immediately visible in the observations, such as trend changes.
arXiv Detail & Related papers (2020-07-07T07:11:09Z) - When is Particle Filtering Efficient for Planning in Partially Observed
Linear Dynamical Systems? [60.703816720093016]
This paper initiates a study on the efficiency of particle filtering for sequential planning.
We are able to bound the number of particles needed so that the long-run reward of the policy based on particle filtering is close to that based on exact inference.
We believe this technique can be useful in other sequential decision-making problems.
arXiv Detail & Related papers (2020-06-10T17:43:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.