Semantic-Rearrangement-Based Multi-Level Alignment for Domain Generalized Segmentation
- URL: http://arxiv.org/abs/2404.13701v1
- Date: Sun, 21 Apr 2024 16:05:38 GMT
- Title: Semantic-Rearrangement-Based Multi-Level Alignment for Domain Generalized Segmentation
- Authors: Guanlong Jiao, Chenyangguang Zhang, Haonan Yin, Yu Mo, Biqing Huang, Hui Pan, Yi Luo, Jingxian Liu,
- Abstract summary: We argue that different local semantic regions perform different visual characteristics from the source domain to the target domain.
We propose the Semantic-Rearrangement-based Multi-Level Alignment (SRMA) to overcome this problem.
- Score: 11.105659621713855
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalized semantic segmentation is an essential computer vision task, for which models only leverage source data to learn the capability of generalized semantic segmentation towards the unseen target domains. Previous works typically address this challenge by global style randomization or feature regularization. In this paper, we argue that given the observation that different local semantic regions perform different visual characteristics from the source domain to the target domain, methods focusing on global operations are hard to capture such regional discrepancies, thus failing to construct domain-invariant representations with the consistency from local to global level. Therefore, we propose the Semantic-Rearrangement-based Multi-Level Alignment (SRMA) to overcome this problem. SRMA first incorporates a Semantic Rearrangement Module (SRM), which conducts semantic region randomization to enhance the diversity of the source domain sufficiently. A Multi-Level Alignment module (MLA) is subsequently proposed with the help of such diversity to establish the global-regional-local consistent domain-invariant representations. By aligning features across randomized samples with domain-neutral knowledge at multiple levels, SRMA provides a more robust way to handle the source-target domain gap. Extensive experiments demonstrate the superiority of SRMA over the current state-of-the-art works on various benchmarks.
Related papers
- Generalize or Detect? Towards Robust Semantic Segmentation Under Multiple Distribution Shifts [56.57141696245328]
In open-world scenarios, where both novel classes and domains may exist, an ideal segmentation model should detect anomaly classes for safety.
Existing methods often struggle to distinguish between domain-level and semantic-level distribution shifts.
arXiv Detail & Related papers (2024-11-06T11:03:02Z) - Adaptive Domain Generalization via Online Disagreement Minimization [17.215683606365445]
Domain Generalization aims to safely transfer a model to unseen target domains.
AdaODM adaptively modifies the source model at test time for different target domains.
Results show AdaODM stably improves the generalization capacity on unseen domains.
arXiv Detail & Related papers (2022-08-03T11:51:11Z) - Compound Domain Generalization via Meta-Knowledge Encoding [55.22920476224671]
We introduce Style-induced Domain-specific Normalization (SDNorm) to re-normalize the multi-modal underlying distributions.
We harness the prototype representations, the centroids of classes, to perform relational modeling in the embedding space.
Experiments on four standard Domain Generalization benchmarks reveal that COMEN exceeds the state-of-the-art performance without the need of domain supervision.
arXiv Detail & Related papers (2022-03-24T11:54:59Z) - Discriminative Domain-Invariant Adversarial Network for Deep Domain
Generalization [33.84004077585957]
We propose a discriminative domain-invariant adversarial network (DDIAN) for domain generalization.
DDIAN achieves better prediction on unseen target data during training compared to state-of-the-art domain generalization approaches.
arXiv Detail & Related papers (2021-08-20T04:24:12Z) - Structured Latent Embeddings for Recognizing Unseen Classes in Unseen
Domains [108.11746235308046]
We propose a novel approach that learns domain-agnostic structured latent embeddings by projecting images from different domains.
Our experiments on the challenging DomainNet and DomainNet-LS benchmarks show the superiority of our approach over existing methods.
arXiv Detail & Related papers (2021-07-12T17:57:46Z) - Domain Consistency Regularization for Unsupervised Multi-source Domain
Adaptive Classification [57.92800886719651]
Deep learning-based multi-source unsupervised domain adaptation (MUDA) has been actively studied in recent years.
domain shift in MUDA exists not only between the source and target domains but also among multiple source domains.
We propose an end-to-end trainable network that exploits domain Consistency Regularization for unsupervised Multi-source domain Adaptive classification.
arXiv Detail & Related papers (2021-06-16T07:29:27Z) - Cross-Domain Grouping and Alignment for Domain Adaptive Semantic
Segmentation [74.3349233035632]
Existing techniques to adapt semantic segmentation networks across the source and target domains within deep convolutional neural networks (CNNs) do not consider an inter-class variation within the target domain itself or estimated category.
We introduce a learnable clustering module, and a novel domain adaptation framework called cross-domain grouping and alignment.
Our method consistently boosts the adaptation performance in semantic segmentation, outperforming the state-of-the-arts on various domain adaptation settings.
arXiv Detail & Related papers (2020-12-15T11:36:21Z) - Dual Distribution Alignment Network for Generalizable Person
Re-Identification [174.36157174951603]
Domain generalization (DG) serves as a promising solution to handle person Re-Identification (Re-ID)
We present a Dual Distribution Alignment Network (DDAN) which handles this challenge by selectively aligning distributions of multiple source domains.
We evaluate our DDAN on a large-scale Domain Generalization Re-ID (DG Re-ID) benchmark.
arXiv Detail & Related papers (2020-07-27T00:08:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.