論文の概要: How to Inverting the Leverage Score Distribution?
- arxiv url: http://arxiv.org/abs/2404.13785v1
- Date: Sun, 21 Apr 2024 21:36:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 15:45:49.712903
- Title: How to Inverting the Leverage Score Distribution?
- Title(参考訳): レバレッジスコア分布の逆変換法
- Authors: Zhihang Li, Zhao Song, Weixin Wang, Junze Yin, Zheng Yu,
- Abstract要約: ツールとして広く利用されているレバレッジスコアにもかかわらず、本論文では、新しい問題、すなわち反転レバレッジスコアについて検討する。
我々は、ニュートン法における大域収束率を確保するために反復縮小と帰納仮説を用いる。
この統計レバレッジの反転に関する重要な研究は、解釈、データリカバリ、セキュリティにおける多くの新しい応用を開放する。
- 参考スコア(独自算出の注目度): 16.744561210470632
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Leverage score is a fundamental problem in machine learning and theoretical computer science. It has extensive applications in regression analysis, randomized algorithms, and neural network inversion. Despite leverage scores are widely used as a tool, in this paper, we study a novel problem, namely the inverting leverage score problem. We analyze to invert the leverage score distributions back to recover model parameters. Specifically, given a leverage score $\sigma \in \mathbb{R}^n$, the matrix $A \in \mathbb{R}^{n \times d}$, and the vector $b \in \mathbb{R}^n$, we analyze the non-convex optimization problem of finding $x \in \mathbb{R}^d$ to minimize $\| \mathrm{diag}( \sigma ) - I_n \circ (A(x) (A(x)^\top A(x) )^{-1} A(x)^\top ) \|_F$, where $A(x):= S(x)^{-1} A \in \mathbb{R}^{n \times d} $, $S(x) := \mathrm{diag}(s(x)) \in \mathbb{R}^{n \times n}$ and $s(x) : = Ax - b \in \mathbb{R}^n$. Our theoretical studies include computing the gradient and Hessian, demonstrating that the Hessian matrix is positive definite and Lipschitz, and constructing first-order and second-order algorithms to solve this regression problem. Our work combines iterative shrinking and the induction hypothesis to ensure global convergence rates for the Newton method, as well as the properties of Lipschitz and strong convexity to guarantee the performance of gradient descent. This important study on inverting statistical leverage opens up numerous new applications in interpretation, data recovery, and security.
- Abstract(参考訳): レバレッジスコアは、機械学習と理論計算機科学の基本的な問題である。
回帰分析、ランダム化アルゴリズム、ニューラルネットワークのインバージョンに広く応用されている。
本稿では,レバレッジスコアがツールとして広く利用されているにもかかわらず,新しい問題,すなわち逆レバレッジスコア問題について検討する。
モデルパラメータを復元するために,レバレッジスコア分布を逆解析する。
具体的には、レバレッジスコア $\sigma \in \mathbb{R}^n$, the matrix $A \in \mathbb{R}^{n \times d}$, and the vector $b \in \mathbb{R}^n$, we analyze the non-convex optimization problem of find $x \in \mathbb{R}^d$ to minimize $\| \mathrm{diag}( \sigma ) - I_n \circ (A(x) (A(x)^\top A(x) )^{-1} A(x)^\top ) \|_F$, where $A(x):= S(x)^{-1} A \in \mathbb{R}^{n \times d} $S(x)= S(x)^{-1} A(x) = S(x)^{-1} A(x)=\in \mathbb{R} \times d} $S(x)= S(x)= A(x)=\in \mathbb{R} - A(x)=A(x)=A(x)=A(x)=\in \mathbb{R} である。
我々の理論的研究は、勾配とヘッセンの計算、ヘッセン行列が正定値であること、リプシッツ、この回帰問題を解決するために一階および二階のアルゴリズムの構築などである。
我々の研究は、反復的縮小と帰納仮説を組み合わせることで、ニュートン法における大域収束率を保証するとともに、リプシッツの性質と強い凸性を利用して勾配降下性能を保証している。
この統計レバレッジの反転に関する重要な研究は、解釈、データリカバリ、セキュリティにおける多くの新しい応用を開放する。
関連論文リスト
- In-depth Analysis of Low-rank Matrix Factorisation in a Federated Setting [21.002519159190538]
我々は分散アルゴリズムを解析し、$N$クライアント上で低ランク行列の分解を計算する。
グローバルな$mathbfV$ in $mathbbRd times r$をすべてのクライアントに共通とし、ローカルな$mathbfUi$ in $mathbbRn_itimes r$を得る。
論文 参考訳(メタデータ) (2024-09-13T12:28:42Z) - Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method [10.742859956268655]
本稿では,レバレッジスコア勾配から固有モデルパラメータを復元することを目的とする。
具体的には、レバレッジスコア勾配の逆転を$g(x)$として精査する。
論文 参考訳(メタデータ) (2024-08-21T01:39:42Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
単一インデックス対象関数 $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ の等方的ガウスデータの下で勾配降下学習の問題を考察する。
SGDアルゴリズムで最適化された2層ニューラルネットワークは、サンプル付き任意のリンク関数の$f_*$を学習し、実行時の複雑さは$n asymp T asymp C(q) cdot dであることを示す。
論文 参考訳(メタデータ) (2024-06-03T17:56:58Z) - Provably learning a multi-head attention layer [55.2904547651831]
マルチヘッドアテンション層は、従来のフィードフォワードモデルとは分離したトランスフォーマーアーキテクチャの重要な構成要素の1つである。
本研究では,ランダムな例から多面的注意層を実証的に学習する研究を開始する。
最悪の場合、$m$に対する指数的依存は避けられないことを示す。
論文 参考訳(メタデータ) (2024-02-06T15:39:09Z) - A Unified Scheme of ResNet and Softmax [8.556540804058203]
回帰問題を理論的に解析する: $| langle exp(Ax) + A x, bf 1_n rangle-1 ( exp(Ax) + Ax )
この回帰問題は、ソフトマックス回帰とResNetを組み合わせた統一的なスキームである。
論文 参考訳(メタデータ) (2023-09-23T21:41:01Z) - An Over-parameterized Exponential Regression [18.57735939471469]
LLM(Large Language Models)の分野での最近の発展は、指数的アクティベーション関数の使用への関心を喚起している。
ニューラル関数 $F: mathbbRd times m times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRd times mathbbRdd
論文 参考訳(メタデータ) (2023-03-29T07:29:07Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Statistical Query Lower Bounds for List-Decodable Linear Regression [55.06171096484622]
本稿では,リスト復号化可能な線形回帰問題について考察する。
我々の主な成果は、この問題に対して$dmathrmpoly (1/alpha)$の統計的クエリ(SQ)の低いバウンダリである。
論文 参考訳(メタデータ) (2021-06-17T17:45:21Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z) - Agnostic Learning of a Single Neuron with Gradient Descent [92.7662890047311]
期待される正方形損失から、最も適合した単一ニューロンを学習することの問題点を考察する。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
ReLUアクティベーションでは、我々の人口リスク保証は$O(mathsfOPT1/2)+epsilon$である。
論文 参考訳(メタデータ) (2020-05-29T07:20:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。