論文の概要: Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method
- arxiv url: http://arxiv.org/abs/2408.11267v1
- Date: Wed, 21 Aug 2024 01:39:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 18:48:55.552610
- Title: Inverting the Leverage Score Gradient: An Efficient Approximate Newton Method
- Title(参考訳): レバレッジスコア勾配の反転:効率的な近似ニュートン法
- Authors: Chenyang Li, Zhao Song, Zhaoxing Xu, Junze Yin,
- Abstract要約: 本稿では,レバレッジスコア勾配から固有モデルパラメータを復元することを目的とする。
具体的には、レバレッジスコア勾配の逆転を$g(x)$として精査する。
- 参考スコア(独自算出の注目度): 10.742859956268655
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Leverage scores have become essential in statistics and machine learning, aiding regression analysis, randomized matrix computations, and various other tasks. This paper delves into the inverse problem, aiming to recover the intrinsic model parameters given the leverage scores gradient. This endeavor not only enriches the theoretical understanding of models trained with leverage score techniques but also has substantial implications for data privacy and adversarial security. We specifically scrutinize the inversion of the leverage score gradient, denoted as $g(x)$. An innovative iterative algorithm is introduced for the approximate resolution of the regularized least squares problem stated as $\min_{x \in \mathbb{R}^d} 0.5 \|g(x) - c\|_2^2 + 0.5\|\mathrm{diag}(w)Ax\|_2^2$. Our algorithm employs subsampled leverage score distributions to compute an approximate Hessian in each iteration, under standard assumptions, considerably mitigating the time complexity. Given that a total of $T = \log(\| x_0 - x^* \|_2/ \epsilon)$ iterations are required, the cost per iteration is optimized to the order of $O( (\mathrm{nnz}(A) + d^{\omega} ) \cdot \mathrm{poly}(\log(n/\delta))$, where $\mathrm{nnz}(A)$ denotes the number of non-zero entries of $A$.
- Abstract(参考訳): レバレッジスコアは統計学や機械学習、回帰分析、ランダム化された行列計算、その他様々なタスクに欠かせないものとなっている。
本稿では,レバレッジスコア勾配から固有モデルパラメータを復元することを目的とした逆問題について考察する。
この取り組みは、レバレッジスコア技術でトレーニングされたモデルの理論的理解を深めるだけでなく、データのプライバシと敵のセキュリティにも重大な影響を与える。
我々は特に$gと表記されるレバレッジスコア勾配の反転を精査する。
(x)$。
正規化最小二乗問題の近似解を $\min_{x \in \mathbb{R}^d} 0.5 \|g とする革新的反復アルゴリズムを導入する。
(x) - c\|_2^2 + 0.5\|\mathrm{diag}
(w)Ax\|_2^2$。
本アルゴリズムでは,各繰り返しにおける近似ヘシアンを標準仮定で計算し,時間的複雑性をかなり軽減するために,サブサンプリングされたレバレッジスコア分布を用いる。
合計$T = \log(\| x_0 - x^* \|_2/ \epsilon)$イテレーションが必要な場合、反復当たりのコストは$O( (\mathrm{nnz}(A) + d^{\omega} ) \cdot \mathrm{poly}(\log(n/\delta))$に最適化される。
関連論文リスト
- Implicit High-Order Moment Tensor Estimation and Learning Latent Variable Models [39.33814194788341]
潜在変数モデル学習の課題について検討する。
このような応用により、暗黙のモーメント計算のための一般化されたアルゴリズムを開発した。
一般的なアルゴリズムを利用して, 以下のモデルに対する初等学習者を得る。
論文 参考訳(メタデータ) (2024-11-23T23:13:24Z) - Sample and Computationally Efficient Robust Learning of Gaussian Single-Index Models [37.42736399673992]
シングルインデックスモデル (SIM) は $sigma(mathbfwast cdot mathbfx)$ という形式の関数であり、$sigma: mathbbR to mathbbR$ は既知のリンク関数であり、$mathbfwast$ は隠れ単位ベクトルである。
適切な学習者が$L2$-error of $O(mathrmOPT)+epsilon$。
論文 参考訳(メタデータ) (2024-11-08T17:10:38Z) - Iterative thresholding for non-linear learning in the strong $\varepsilon$-contamination model [3.309767076331365]
閾値降下を用いた単一ニューロンモデル学習のための近似境界を導出する。
線形回帰問題も研究し、$sigma(mathbfx) = mathbfx$ となる。
論文 参考訳(メタデータ) (2024-09-05T16:59:56Z) - How to Inverting the Leverage Score Distribution? [16.744561210470632]
ツールとして広く利用されているレバレッジスコアにもかかわらず、本論文では、新しい問題、すなわち反転レバレッジスコアについて検討する。
我々は、ニュートン法における大域収束率を確保するために反復縮小と帰納仮説を用いる。
この統計レバレッジの反転に関する重要な研究は、解釈、データリカバリ、セキュリティにおける多くの新しい応用を開放する。
論文 参考訳(メタデータ) (2024-04-21T21:36:42Z) - A Sub-Quadratic Time Algorithm for Robust Sparse Mean Estimation [6.853165736531941]
逆数外乱の存在下でのスパース平均推定のアルゴリズム的問題について検討する。
我々の主な貢献は、$mathrmpoly(k,log d,1/epsilon)$サンプルを用いて、エフェサブクアクラティック時間で実行される頑健なスパース平均推定アルゴリズムである。
論文 参考訳(メタデータ) (2024-03-07T18:23:51Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
正方形損失に関して、標準的なガウス分布の下での$k$ReLU活性化の線形結合をPAC学習する問題をmathbbRd$で検討する。
本研究の主な成果は,この学習課題に対して,サンプルおよび計算複雑性が$(dk/epsilon)O(k)$で,epsilon>0$が目標精度である。
論文 参考訳(メタデータ) (2023-07-24T14:37:22Z) - An Oblivious Stochastic Composite Optimization Algorithm for Eigenvalue
Optimization Problems [76.2042837251496]
相補的な合成条件に基づく2つの難解なミラー降下アルゴリズムを導入する。
注目すべきは、どちらのアルゴリズムも、目的関数のリプシッツ定数や滑らかさに関する事前の知識なしで機能する。
本稿では,大規模半確定プログラム上での手法の効率性とロバスト性を示す。
論文 参考訳(メタデータ) (2023-06-30T08:34:29Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
モノトン活性化に対する $mathbfxmapstosigma(mathbfwcdotmathbfx)$ の関数について検討する。
学習者の目標は仮説ベクトル $mathbfw$ that $F(mathbbw)=C, epsilon$ を高い確率で出力することである。
論文 参考訳(メタデータ) (2022-06-17T17:55:43Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
本稿では,データセットの大部分を敵が破壊できるリストデコタブル平均推定の問題について検討する。
我々は、ほぼ最適な統計的保証を達成するために、リストデコダブル平均推定のための新しいアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-06-16T03:34:14Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
高次元におけるリストデコタブル平均推定の基本的な課題について検討する。
我々のアルゴリズムは、すべての$k = O(sqrtd) cup Omega(d)$に対して$widetildeO(ndk)$で実行されます。
我々のアルゴリズムの変種は、すべての$k$に対してランタイム$widetildeO(ndk)$を持ち、リカバリ保証の$O(sqrtlog k)$ Factorを犠牲にしている。
論文 参考訳(メタデータ) (2020-11-19T17:21:37Z) - Optimal Robust Linear Regression in Nearly Linear Time [97.11565882347772]
学習者が生成モデル$Y = langle X,w* rangle + epsilon$から$n$のサンプルにアクセスできるような高次元頑健な線形回帰問題について検討する。
i) $X$ is L4-L2 hypercontractive, $mathbbE [XXtop]$ has bounded condition number and $epsilon$ has bounded variance, (ii) $X$ is sub-Gaussian with identity second moment and $epsilon$ is
論文 参考訳(メタデータ) (2020-07-16T06:44:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。