Enforcing Conditional Independence for Fair Representation Learning and Causal Image Generation
- URL: http://arxiv.org/abs/2404.13798v1
- Date: Sun, 21 Apr 2024 23:34:45 GMT
- Title: Enforcing Conditional Independence for Fair Representation Learning and Causal Image Generation
- Authors: Jensen Hwa, Qingyu Zhao, Aditya Lahiri, Adnan Masood, Babak Salimi, Ehsan Adeli,
- Abstract summary: Conditional independence (CI) constraints are critical for defining and evaluating fairness in machine learning.
We introduce a new training paradigm that can be applied to any encoder architecture.
- Score: 13.841888171417017
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Conditional independence (CI) constraints are critical for defining and evaluating fairness in machine learning, as well as for learning unconfounded or causal representations. Traditional methods for ensuring fairness either blindly learn invariant features with respect to a protected variable (e.g., race when classifying sex from face images) or enforce CI relative to the protected attribute only on the model output (e.g., the sex label). Neither of these methods are effective in enforcing CI in high-dimensional feature spaces. In this paper, we focus on a nascent approach characterizing the CI constraint in terms of two Jensen-Shannon divergence terms, and we extend it to high-dimensional feature spaces using a novel dynamic sampling strategy. In doing so, we introduce a new training paradigm that can be applied to any encoder architecture. We are able to enforce conditional independence of the diffusion autoencoder latent representation with respect to any protected attribute under the equalized odds constraint and show that this approach enables causal image generation with controllable latent spaces. Our experimental results demonstrate that our approach can achieve high accuracy on downstream tasks while upholding equality of odds.
Related papers
- Adv-Diffusion: Imperceptible Adversarial Face Identity Attack via Latent
Diffusion Model [61.53213964333474]
We propose a unified framework Adv-Diffusion that can generate imperceptible adversarial identity perturbations in the latent space but not the raw pixel space.
Specifically, we propose the identity-sensitive conditioned diffusion generative model to generate semantic perturbations in the surroundings.
The designed adaptive strength-based adversarial perturbation algorithm can ensure both attack transferability and stealthiness.
arXiv Detail & Related papers (2023-12-18T15:25:23Z) - Robust Perception through Equivariance [28.43219868475906]
We introduce a framework that uses the dense intrinsic constraints in natural images to robustify inference.
By introducing constraints at inference time, we can shift the burden of robustness from training to the inference algorithm.
arXiv Detail & Related papers (2022-12-12T17:52:46Z) - Practical Approaches for Fair Learning with Multitype and Multivariate
Sensitive Attributes [70.6326967720747]
It is important to guarantee that machine learning algorithms deployed in the real world do not result in unfairness or unintended social consequences.
We introduce FairCOCCO, a fairness measure built on cross-covariance operators on reproducing kernel Hilbert Spaces.
We empirically demonstrate consistent improvements against state-of-the-art techniques in balancing predictive power and fairness on real-world datasets.
arXiv Detail & Related papers (2022-11-11T11:28:46Z) - Learning Aligned Cross-Modal Representation for Generalized Zero-Shot
Classification [17.177622259867515]
We propose an innovative autoencoder network by learning Aligned Cross-Modal Representations (dubbed ACMR) for Generalized Zero-Shot Classification (GZSC)
Specifically, we propose a novel Vision-Semantic Alignment (VSA) method to strengthen the alignment of cross-modal latent features on the latent subspaces guided by a learned classifier.
In addition, we propose a novel Information Enhancement Module (IEM) to reduce the possibility of latent variables collapse meanwhile encouraging the discriminative ability of latent variables.
arXiv Detail & Related papers (2021-12-24T03:35:37Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
We propose a novel approach to identify meaningful and independent factors of variation in a dataset.
Our method involves two separate latent subspaces for the target property and the remaining input information.
We demonstrate on synthetic and molecular data that our approach identifies more meaningful factors which lead to sparser and more interpretable models.
arXiv Detail & Related papers (2021-11-25T17:33:12Z) - Latent Space Conditioning on Generative Adversarial Networks [3.823356975862006]
We introduce a novel framework that benefits from two popular learning techniques, adversarial training and representation learning.
In particular, our approach exploits the structure of a latent space (learned by the representation learning) and employs it to condition the generative model.
arXiv Detail & Related papers (2020-12-16T08:58:10Z) - Generating Out of Distribution Adversarial Attack using Latent Space
Poisoning [5.1314136039587925]
We propose a novel mechanism of generating adversarial examples where the actual image is not corrupted.
latent space representation is utilized to tamper with the inherent structure of the image.
As opposed to gradient-based attacks, the latent space poisoning exploits the inclination of classifiers to model the independent and identical distribution of the training dataset.
arXiv Detail & Related papers (2020-12-09T13:05:44Z) - Evidential Sparsification of Multimodal Latent Spaces in Conditional
Variational Autoencoders [63.46738617561255]
We consider the problem of sparsifying the discrete latent space of a trained conditional variational autoencoder.
We use evidential theory to identify the latent classes that receive direct evidence from a particular input condition and filter out those that do not.
Experiments on diverse tasks, such as image generation and human behavior prediction, demonstrate the effectiveness of our proposed technique.
arXiv Detail & Related papers (2020-10-19T01:27:21Z) - Unsupervised Controllable Generation with Self-Training [90.04287577605723]
controllable generation with GANs remains a challenging research problem.
We propose an unsupervised framework to learn a distribution of latent codes that control the generator through self-training.
Our framework exhibits better disentanglement compared to other variants such as the variational autoencoder.
arXiv Detail & Related papers (2020-07-17T21:50:35Z) - Learning to Manipulate Individual Objects in an Image [71.55005356240761]
We describe a method to train a generative model with latent factors that are independent and localized.
This means that perturbing the latent variables affects only local regions of the synthesized image, corresponding to objects.
Unlike other unsupervised generative models, ours enables object-centric manipulation, without requiring object-level annotations.
arXiv Detail & Related papers (2020-04-11T21:50:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.