論文の概要: A Comprehensive Survey and Taxonomy on Point Cloud Registration Based on Deep Learning
- arxiv url: http://arxiv.org/abs/2404.13830v1
- Date: Mon, 22 Apr 2024 02:05:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 15:26:21.424888
- Title: A Comprehensive Survey and Taxonomy on Point Cloud Registration Based on Deep Learning
- Title(参考訳): 深層学習に基づくポイントクラウド登録に関する総合調査と分類
- Authors: Yu-Xin Zhang, Jie Gui, Xiaofeng Cong, Xin Gong, Wenbing Tao,
- Abstract要約: ポイントクラウド登録(PCR)は、1つのポイントクラウドを別のポイントクラウドにアライメントする厳格な変換を決定することを伴う。
優れた深層学習(DL)ベースの登録法が提案されているにもかかわらず、DLベースのPCR技術に関する包括的で体系的な研究はいまだに不足している。
- 参考スコア(独自算出の注目度): 28.12228228067424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud registration (PCR) involves determining a rigid transformation that aligns one point cloud to another. Despite the plethora of outstanding deep learning (DL)-based registration methods proposed, comprehensive and systematic studies on DL-based PCR techniques are still lacking. In this paper, we present a comprehensive survey and taxonomy of recently proposed PCR methods. Firstly, we conduct a taxonomy of commonly utilized datasets and evaluation metrics. Secondly, we classify the existing research into two main categories: supervised and unsupervised registration, providing insights into the core concepts of various influential PCR models. Finally, we highlight open challenges and potential directions for future research. A curated collection of valuable resources is made available at https://github.com/yxzhang15/PCR.
- Abstract(参考訳): ポイントクラウド登録(PCR)は、1つのポイントクラウドを別のポイントクラウドにアライメントする厳格な変換を決定することを伴う。
優れた深層学習(DL)ベースの登録法が提案されているにもかかわらず、DLベースのPCR技術に関する包括的で体系的な研究はいまだに不足している。
本稿では,最近提案されたPCR法に関する包括的調査と分類について述べる。
まず、よく利用されるデータセットと評価指標の分類を行う。
第2に、既存の研究を、教師なしと教師なしの登録の2つの主要なカテゴリに分類し、様々な影響力のあるPCRモデルのコア概念に関する洞察を提供する。
最後に、今後の研究に向けたオープンな課題と潜在的な方向性を強調します。
貴重なリソースのキュレートされたコレクションはhttps://github.com/yxzhang15/PCRで公開されている。
関連論文リスト
- Patch-Based Contrastive Learning and Memory Consolidation for Online Unsupervised Continual Learning [6.042269506496206]
我々は、オンライン教師なし連続学習(O-UCL)として知られる比較的未探索の学習パラダイムに焦点を当てる。
O-UCLは、教師なし、継続的、あるいはオンライン学習における以前の作業とは異なり、3つの領域を1つの挑戦的で現実的な学習パラダイムにまとめている。
この設定では、エージェントは頻繁に評価され、指定されたオフラインタスクの最後にではなく、データストリームの任意の時点で可能な限りの表現を維持することを目標とする必要があります。
論文 参考訳(メタデータ) (2024-09-24T18:46:32Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - A Survey of Label-Efficient Deep Learning for 3D Point Clouds [109.07889215814589]
本稿では,点雲のラベル効率学習に関する包括的調査を行う。
本稿では,ラベルの種類によって提供されるデータ前提条件に基づいて,ラベル効率のよい学習手法を整理する分類法を提案する。
それぞれのアプローチについて、問題設定の概要と、関連する進展と課題を示す広範な文献レビューを提供する。
論文 参考訳(メタデータ) (2023-05-31T12:54:51Z) - Spatiotemporal Self-supervised Learning for Point Clouds in the Wild [65.56679416475943]
空間領域と時間領域の両方で正のペアを利用するSSL戦略を導入する。
2つの大規模LiDARデータセット上で,自己教師型トレーニングによって実施した広範囲な実験を通じて,このアプローチのメリットを実証する。
論文 参考訳(メタデータ) (2023-03-28T18:06:22Z) - Point Cloud Registration for LiDAR and Photogrammetric Data: a Critical
Synthesis and Performance Analysis on Classic and Deep Learning Algorithms [7.874736360019618]
本稿では,SOTA(State-of-the-art)ポイントクラウド登録手法について概観する。
本研究では,屋内から衛星まで多様な点雲データを用いて,これらの手法を解析・評価する。
古典的な手作り、ディープラーニングに基づく特徴対応、堅牢なC2C手法を含む10以上の手法が試験された。
論文 参考訳(メタデータ) (2023-02-14T16:52:26Z) - PointCLM: A Contrastive Learning-based Framework for Multi-instance
Point Cloud Registration [4.969636478156443]
PointCLMは、ミュートリインスタンスポイントクラウド登録のための対照的な学習ベースのフレームワークである。
提案手法は, 合成データと実データの両方において, 最先端の手法よりも大きなマージンで性能を向上する。
論文 参考訳(メタデータ) (2022-09-01T04:30:05Z) - PCRP: Unsupervised Point Cloud Object Retrieval and Pose Estimation [50.3020332934185]
そこで本研究では,PCRPと呼ばれる,教師なしのクラウドオブジェクトの検索とポーズ推定手法を提案する。
ModelNet40データセットの実験は、従来の学習ベースの手法と比較して、PCRPの優れた性能を示している。
論文 参考訳(メタデータ) (2022-02-16T03:37:43Z) - End-to-End 3D Point Cloud Learning for Registration Task Using Virtual
Correspondences [17.70819292121181]
3Dポイントのクラウド登録は、2つのポイントのクラウド間の厳密な変換を見つけるのが難しいため、依然として非常に難しいトピックである。
本稿では,ポイントクラウド登録問題を解決するために,エンドツーエンドのディープラーニングに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-11-30T06:55:05Z) - Unsupervised Point Cloud Registration via Salient Points Analysis (SPA) [57.62713515497585]
本研究では,SPA (Salient Point Analysis) と呼ばれる非教師付きポイントクラウド登録手法を提案する。
まず、ポイントホップ++法を点点に当てはめ、点の局所的な表面特性に基づいて2点の正解点を見つけ、対応する正解点と整合して登録を行う。
SPA法の有効性は,ModelNet-40データセットから,見かけや見えないクラスやノイズの多い点群に対する実験によって実証される。
論文 参考訳(メタデータ) (2020-09-02T18:40:37Z) - Target-less registration of point clouds: A review [4.307704177248648]
我々は、点雲登録の基本的なワークフロー、すなわち対応決定と変換推定を要約した。
提案手法は,特徴マッチングに基づく手法,反復的最近点アルゴリズム,ランダムな仮説と検証に基づく手法である。
最後に,現在のクラウド登録手法の課題について論じ,自動登録手法の今後の展開について,いくつかのオープンな疑問を提起した。
論文 参考訳(メタデータ) (2019-12-29T23:12:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。