QCore: Data-Efficient, On-Device Continual Calibration for Quantized Models -- Extended Version
- URL: http://arxiv.org/abs/2404.13990v1
- Date: Mon, 22 Apr 2024 08:57:46 GMT
- Title: QCore: Data-Efficient, On-Device Continual Calibration for Quantized Models -- Extended Version
- Authors: David Campos, Bin Yang, Tung Kieu, Miao Zhang, Chenjuan Guo, Christian S. Jensen,
- Abstract summary: Machine learning models can be deployed on edge devices with limited storage and computational capabilities.
We propose QCore to enable continual calibration on the edge.
- Score: 34.280197473547226
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We are witnessing an increasing availability of streaming data that may contain valuable information on the underlying processes. It is thus attractive to be able to deploy machine learning models on edge devices near sensors such that decisions can be made instantaneously, rather than first having to transmit incoming data to servers. To enable deployment on edge devices with limited storage and computational capabilities, the full-precision parameters in standard models can be quantized to use fewer bits. The resulting quantized models are then calibrated using back-propagation and full training data to ensure accuracy. This one-time calibration works for deployments in static environments. However, model deployment in dynamic edge environments call for continual calibration to adaptively adjust quantized models to fit new incoming data, which may have different distributions. The first difficulty in enabling continual calibration on the edge is that the full training data may be too large and thus not always available on edge devices. The second difficulty is that the use of back-propagation on the edge for repeated calibration is too expensive. We propose QCore to enable continual calibration on the edge. First, it compresses the full training data into a small subset to enable effective calibration of quantized models with different bit-widths. We also propose means of updating the subset when new streaming data arrives to reflect changes in the environment, while not forgetting earlier training data. Second, we propose a small bit-flipping network that works with the subset to update quantized model parameters, thus enabling efficient continual calibration without back-propagation. An experimental study, conducted with real-world data in a continual learning setting, offers insight into the properties of QCore and shows that it is capable of outperforming strong baseline methods.
Related papers
- Stepping Forward on the Last Mile [8.756033984943178]
We propose a series of algorithm enhancements that further reduce the memory footprint, and the accuracy gap compared to backpropagation.
Our results demonstrate that on the last mile of model customization on edge devices, training with fixed-point forward gradients is a feasible and practical approach.
arXiv Detail & Related papers (2024-11-06T16:33:21Z) - Self-calibration for Language Model Quantization and Pruning [38.00221764773372]
Quantization and pruning are fundamental approaches for model compression.
In a post-training setting, state-of-the-art quantization and pruning methods require calibration data.
We propose self-calibration as a solution.
arXiv Detail & Related papers (2024-10-22T16:50:00Z) - Winner-Take-All Column Row Sampling for Memory Efficient Adaptation of Language Model [89.8764435351222]
We propose a new family of unbiased estimators called WTA-CRS, for matrix production with reduced variance.
Our work provides both theoretical and experimental evidence that, in the context of tuning transformers, our proposed estimators exhibit lower variance compared to existing ones.
arXiv Detail & Related papers (2023-05-24T15:52:08Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - ESD: Expected Squared Difference as a Tuning-Free Trainable Calibration
Measure [35.996971010199196]
Expected Squared Difference ( ESD) is a tuning-free trainable calibration objective loss.
We show that ESD yields the best-calibrated results compared with previous approaches.
ESD drastically improves the computational costs required for calibration during training.
arXiv Detail & Related papers (2023-03-04T18:06:36Z) - LCS: Learning Compressible Subspaces for Adaptive Network Compression at
Inference Time [57.52251547365967]
We propose a method for training a "compressible subspace" of neural networks that contains a fine-grained spectrum of models.
We present results for achieving arbitrarily fine-grained accuracy-efficiency trade-offs at inference time for structured and unstructured sparsity.
Our algorithm extends to quantization at variable bit widths, achieving accuracy on par with individually trained networks.
arXiv Detail & Related papers (2021-10-08T17:03:34Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
We propose Q-ASR, an integer-only, zero-shot quantization scheme for ASR models.
We show negligible WER change as compared to the full-precision baseline models.
Q-ASR exhibits a large compression rate of more than 4x with small WER degradation.
arXiv Detail & Related papers (2021-03-31T06:05:40Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
As NLP models become larger, executing a trained model requires significant computational resources incurring monetary and environmental costs.
We propose a modification to contextual representation fine-tuning which, during inference, allows for an early (and fast) "exit"
We test our proposed modification on five different datasets in two tasks: three text classification datasets and two natural language inference benchmarks.
arXiv Detail & Related papers (2020-04-16T04:28:08Z) - Quantile Regularization: Towards Implicit Calibration of Regression
Models [30.872605139672086]
We present a method for calibrating regression models based on a novel quantile regularizer defined as the cumulative KL divergence between two CDFs.
We show that the proposed quantile regularizer significantly improves calibration for regression models trained using approaches, such as Dropout VI and Deep Ensembles.
arXiv Detail & Related papers (2020-02-28T16:53:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.