Self-calibration for Language Model Quantization and Pruning
- URL: http://arxiv.org/abs/2410.17170v1
- Date: Tue, 22 Oct 2024 16:50:00 GMT
- Title: Self-calibration for Language Model Quantization and Pruning
- Authors: Miles Williams, George Chrysostomou, Nikolaos Aletras,
- Abstract summary: Quantization and pruning are fundamental approaches for model compression.
In a post-training setting, state-of-the-art quantization and pruning methods require calibration data.
We propose self-calibration as a solution.
- Score: 38.00221764773372
- License:
- Abstract: Quantization and pruning are fundamental approaches for model compression, enabling efficient inference for language models. In a post-training setting, state-of-the-art quantization and pruning methods require calibration data, a small set of unlabeled examples. Conventionally, randomly sampled web text is used, aiming to reflect the model training data. However, this poses two key problems: (1) unrepresentative calibration examples can harm model performance, and (2) organizations increasingly avoid releasing model training data. In this paper, we propose self-calibration as a solution. Our approach requires no external data, instead leveraging the model itself to generate synthetic calibration data as a better approximation of the pre-training data distribution. We extensively compare the performance of self-calibration with several baselines, across a variety of models, compression methods, and tasks. Our approach proves consistently competitive in maximizing downstream task performance, frequently outperforming even using real data.
Related papers
- A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets.
We estimate more than 1000 scaling laws, then derive a set of best practices for estimating scaling laws in new model families.
arXiv Detail & Related papers (2024-10-15T17:59:10Z) - Data Shapley in One Training Run [88.59484417202454]
Data Shapley provides a principled framework for attributing data's contribution within machine learning contexts.
Existing approaches require re-training models on different data subsets, which is computationally intensive.
This paper introduces In-Run Data Shapley, which addresses these limitations by offering scalable data attribution for a target model of interest.
arXiv Detail & Related papers (2024-06-16T17:09:24Z) - Pre-Trained Vision-Language Models as Partial Annotators [40.89255396643592]
Pre-trained vision-language models learn massive data to model unified representations of images and natural languages.
In this paper, we investigate a novel "pre-trained annotating - weakly-supervised learning" paradigm for pre-trained model application and experiment on image classification tasks.
arXiv Detail & Related papers (2024-05-23T17:17:27Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Uncertainty Estimation for Language Reward Models [5.33024001730262]
Language models can learn a range of capabilities from unsupervised training on text corpora.
It is often easier for humans to choose between options than to provide labeled data, and prior work has achieved state-of-the-art performance by training a reward model from such preference comparisons.
We seek to address these problems via uncertainty estimation, which can improve sample efficiency and robustness using active learning and risk-averse reinforcement learning.
arXiv Detail & Related papers (2022-03-14T20:13:21Z) - End-to-End Weak Supervision [15.125993628007972]
We propose an end-to-end approach for directly learning the downstream model.
We show improved performance over prior work in terms of end model performance on downstream test sets.
arXiv Detail & Related papers (2021-07-05T19:10:11Z) - The Right Tool for the Job: Matching Model and Instance Complexities [62.95183777679024]
As NLP models become larger, executing a trained model requires significant computational resources incurring monetary and environmental costs.
We propose a modification to contextual representation fine-tuning which, during inference, allows for an early (and fast) "exit"
We test our proposed modification on five different datasets in two tasks: three text classification datasets and two natural language inference benchmarks.
arXiv Detail & Related papers (2020-04-16T04:28:08Z) - Quantile Regularization: Towards Implicit Calibration of Regression
Models [30.872605139672086]
We present a method for calibrating regression models based on a novel quantile regularizer defined as the cumulative KL divergence between two CDFs.
We show that the proposed quantile regularizer significantly improves calibration for regression models trained using approaches, such as Dropout VI and Deep Ensembles.
arXiv Detail & Related papers (2020-02-28T16:53:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.