論文の概要: Challenges in automatic and selective plant-clearing
- arxiv url: http://arxiv.org/abs/2404.13996v1
- Date: Mon, 22 Apr 2024 09:01:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:45:41.395875
- Title: Challenges in automatic and selective plant-clearing
- Title(参考訳): 自動・選択的プラントクリーニングの課題
- Authors: Fabrice Mayran de Chamisso, Loïc Cotten, Valentine Dhers, Thomas Lompech, Florian Seywert, Arnaud Susset,
- Abstract要約: 持続可能な森林環境下では, 自動的, 選択的プラントクリーニングの課題に対処する。
このような自律システムは、安価でメンテナンスが容易でありながら、気象条件、植物の多様性、地形、雑草に対する高い堅牢性を必要とする。
特に、スペクトル画像の堅牢性の欠如について論じ、参照データベースのサイズの影響を調査し、制御されていない環境で動作しているAIシステム特有の問題について論じる。
- 参考スコア(独自算出の注目度): 0.32985979395737786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent of multispectral imagery and AI, there have been numerous works on automatic plant segmentation for purposes such as counting, picking, health monitoring, localized pesticide delivery, etc. In this paper, we tackle the related problem of automatic and selective plant-clearing in a sustainable forestry context, where an autonomous machine has to detect and avoid specific plants while clearing any weeds which may compete with the species being cultivated. Such an autonomous system requires a high level of robustness to weather conditions, plant variability, terrain and weeds while remaining cheap and easy to maintain. We notably discuss the lack of robustness of spectral imagery, investigate the impact of the reference database's size and discuss issues specific to AI systems operating in uncontrolled environments.
- Abstract(参考訳): マルチスペクトル画像とAIの出現に伴い、カウント、ピック、健康モニタリング、殺虫剤の局部的配信など、目的のための自動植物セグメンテーションに関する研究が数多く行われている。
本稿では, 持続的林業環境において, 自律型機械が特定の植物を検出・回避し, 栽培されている種と競合する雑草を除去する, 自動的・選択的プラントクリーニングの課題に対処する。
このような自律システムは、安価でメンテナンスが容易でありながら、気象条件、植物の多様性、地形、雑草に対する高い堅牢性を必要とする。
特に、スペクトル画像の堅牢性の欠如について論じ、参照データベースのサイズの影響を調査し、制御されていない環境で動作しているAIシステム特有の問題について論じる。
関連論文リスト
- Plant Doctor: A hybrid machine learning and image segmentation software to quantify plant damage in video footage [0.0]
本研究では,アクセス可能なカメラで撮影した映像を用いて,街路植物の自動診断を行うAIシステムを提案する。
本システムは,都市部における病気のコントロールを支援するため,日常的に植物の健康をモニタリングすることを目的としている。
その結果, 葉の損傷診断におけるシステムの堅牢性と精度が示され, 大規模都会の植物病モニタリングにも応用できる可能性が示唆された。
論文 参考訳(メタデータ) (2024-07-03T07:11:18Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - Progressing from Anomaly Detection to Automated Log Labeling and
Pioneering Root Cause Analysis [53.24804865821692]
本研究では、ログ異常の分類を導入し、ラベル付けの課題を軽減するために、自動ラベリングについて検討する。
この研究は、根本原因分析が異常検出に続く未来を予見し、異常の根本原因を解明する。
論文 参考訳(メタデータ) (2023-12-22T15:04:20Z) - BonnBeetClouds3D: A Dataset Towards Point Cloud-based Organ-level
Phenotyping of Sugar Beet Plants under Field Conditions [30.27773980916216]
農業生産は今後数十年間、気候変動と持続可能性の必要性によって深刻な課題に直面している。
自律無人航空機(UAV)による作物のモニタリングと、ロボットによる非化学雑草によるフィールド管理の進歩は、これらの課題に対処するのに有用である。
表現型化と呼ばれる植物形質の分析は、植物の育種に不可欠な活動であるが、大量の手作業が伴う。
論文 参考訳(メタデータ) (2023-12-22T14:06:44Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
病気によって引き起こされる植物の正常な状態の破壊は、しばしば本質的な植物活動に干渉する。
ドローン画像を用いた植物病の効率的な検出のための深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-22T21:15:12Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
本研究では,ブドウの葉のイメージを意味的にセグメント化するためにDeep Learning法を用いて,葉の表現型自動検出システムを開発した。
私たちの研究は、成長や開発のような動的な特性を捉え定量化できる植物ライフサイクルのモニタリングに寄与します。
論文 参考訳(メタデータ) (2022-10-24T14:37:09Z) - Attention-driven Next-best-view Planning for Efficient Reconstruction of Plants and Targeted Plant Parts [0.0]
我々は、注意駆動型NBV計画戦略を用いて、目標知覚を改善する上での注意の役割について検討する。
本研究では,作業関連部品に注意を集中させることで,3次元再構築のスピードと精度を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-06-21T11:46:57Z) - Automated Pest Detection with DNN on the Edge for Precision Agriculture [0.0]
本稿では,機械学習(ML)機能により強化された組込みシステムについて,果樹園内での害虫感染の連続検出を確実にする。
3つの異なるMLアルゴリズムがトレーニングされ、デプロイされ、プラットフォームの能力を強調している。
その結果,農夫の介入なしに無期限に害虫感染処理を自動化できることが示唆された。
論文 参考訳(メタデータ) (2021-08-01T10:17:48Z) - Towards self-organized control: Using neural cellular automata to
robustly control a cart-pole agent [62.997667081978825]
我々は、カートポールエージェントを制御するために、ニューラルセルオートマトンを使用する。
我々は、Q値の推定値として出力セルの状態を用いる深層学習を用いてモデルを訓練した。
論文 参考訳(メタデータ) (2021-06-29T10:49:42Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Towards robust sensing for Autonomous Vehicles: An adversarial
perspective [82.83630604517249]
結果として得られる決定が摂動に対して堅牢であることは、最も重要なことです。
敵対的摂動は、意図的に環境や感覚測定の修正を施したものである。
より安全なシステムの構築とデプロイには,センサーシステムの脆弱性を慎重に評価する必要がある。
論文 参考訳(メタデータ) (2020-07-14T05:25:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。