Hybrid Ensemble-Based Travel Mode Prediction
- URL: http://arxiv.org/abs/2404.14017v1
- Date: Mon, 22 Apr 2024 09:32:38 GMT
- Title: Hybrid Ensemble-Based Travel Mode Prediction
- Authors: Paweł Golik, Maciej Grzenda, Elżbieta Sienkiewicz,
- Abstract summary: Travel mode choice (TMC) prediction helps in understanding what makes citizens choose different modes of transport for individual trips.
As behaviour may evolve over time, we also face the question of detecting concept drift in the data.
This necessitates using appropriate methods to address potential concept drift.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Travel mode choice (TMC) prediction, which can be formulated as a classification task, helps in understanding what makes citizens choose different modes of transport for individual trips. This is also a major step towards fostering sustainable transportation. As behaviour may evolve over time, we also face the question of detecting concept drift in the data. This necessitates using appropriate methods to address potential concept drift. In particular, it is necessary to decide whether batch or stream mining methods should be used to develop periodically updated TMC models. To address the challenge of the development of TMC models, we propose the novel Incremental Ensemble of Batch and Stream Models (IEBSM) method aimed at adapting travel mode choice classifiers to concept drift possibly occurring in the data. It relies on the combination of drift detectors with batch learning and stream mining models. We compare it against batch and incremental learners, including methods relying on active drift detection. Experiments with varied travel mode data sets representing both city and country levels show that the IEBSM method both detects drift in travel mode data and successfully adapts the models to evolving travel mode choice data. The method has a higher rank than batch and stream learners.
Related papers
- MetaFollower: Adaptable Personalized Autonomous Car Following [63.90050686330677]
We propose an adaptable personalized car-following framework - MetaFollower.
We first utilize Model-Agnostic Meta-Learning (MAML) to extract common driving knowledge from various CF events.
We additionally combine Long Short-Term Memory (LSTM) and Intelligent Driver Model (IDM) to reflect temporal heterogeneity with high interpretability.
arXiv Detail & Related papers (2024-06-23T15:30:40Z) - Combining data from multiple sources for urban travel mode choice modelling [0.8437187555622164]
There is a growing need to predict when people will decide to use different travel modes with an emphasis on environmentally friendly modes.
In a growing number of cases machine learning methods are used to predict travel mode choices given respondent and journey features.
We propose an architecture of a software platform performing the data fusion combining data documenting journeys with the features calculated to summarise transport options.
arXiv Detail & Related papers (2024-05-15T16:41:53Z) - Mixed Gaussian Flow for Diverse Trajectory Prediction [78.00204650749453]
We propose a flow-based model to transform a mixed Gaussian prior into the future trajectory manifold.
The model shows a better capacity for generating diverse trajectory patterns.
We also demonstrate that it can generate diverse, controllable, and out-of-distribution trajectories.
arXiv Detail & Related papers (2024-02-19T15:48:55Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
We introduce a novel trajectory generator named Controllable Diffusion Trajectory (CDT)
CDT integrates information and social interactions into a Transformer-based conditional denoising diffusion model to guide the prediction of future trajectories.
To ensure multimodality, we incorporate behavioral tokens to direct the trajectory's modes, such as going straight, turning right or left.
arXiv Detail & Related papers (2024-02-06T13:16:54Z) - Online Test-Time Adaptation of Spatial-Temporal Traffic Flow Forecasting [13.770733370640565]
This paper conducts the first study of the online test-time adaptation techniques for spatial-temporal traffic flow forecasting problems.
We propose an Adaptive Double Correction by Series Decomposition (ADCSD) method, which first decomposes the output of the trained model into seasonal and trend-cyclical parts.
In the proposed ADCSD method, instead of fine-tuning the whole trained model during the testing phase, a lite network is attached after the trained model, and only the lite network is fine-tuned in the testing process each time a data entry is observed.
arXiv Detail & Related papers (2024-01-08T12:04:39Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - Deep Inverse Reinforcement Learning for Route Choice Modeling [0.6853165736531939]
Route choice modeling is a fundamental task in transportation planning and demand forecasting.
This study proposes a general deep inverse reinforcement learning (IRL) framework for link-based route choice modeling.
Experiment results based on taxi GPS data from Shanghai, China validate the improved performance of the proposed model.
arXiv Detail & Related papers (2022-06-18T06:33:06Z) - StableMoE: Stable Routing Strategy for Mixture of Experts [109.0602120199226]
Mixture-of-Experts (MoE) technique can scale up the model size of Transformers with an affordable computational overhead.
We propose StableMoE with two training stages to address the routing fluctuation problem.
Results show that StableMoE outperforms existing MoE methods in terms of both convergence speed and performance.
arXiv Detail & Related papers (2022-04-18T16:48:19Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - A Data-Driven Travel Mode Share Estimation Framework based on Mobile
Device Location Data [5.767204062337505]
This paper studies the capability of MDLD on estimating travel mode share at aggregated levels.
A data-driven framework is proposed to extract travel behavior information from the MDLD.
The proposed framework is applied to two large-scale MDLD datasets.
arXiv Detail & Related papers (2020-06-17T17:57:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.