Combining data from multiple sources for urban travel mode choice modelling
- URL: http://arxiv.org/abs/2407.12137v1
- Date: Wed, 15 May 2024 16:41:53 GMT
- Title: Combining data from multiple sources for urban travel mode choice modelling
- Authors: Maciej Grzenda, Marcin Luckner, Jakub Zawieska, Przemysław Wrona,
- Abstract summary: There is a growing need to predict when people will decide to use different travel modes with an emphasis on environmentally friendly modes.
In a growing number of cases machine learning methods are used to predict travel mode choices given respondent and journey features.
We propose an architecture of a software platform performing the data fusion combining data documenting journeys with the features calculated to summarise transport options.
- Score: 0.8437187555622164
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Demand for sustainable mobility is particularly high in urban areas. Hence, there is a growing need to predict when people will decide to use different travel modes with an emphasis on environmentally friendly travel modes. As travel mode choice (TMC) is influenced by multiple factors, in a growing number of cases machine learning methods are used to predict travel mode choices given respondent and journey features. Typically, travel diaries are used to provide core relevant data. However, other features such as attributes of mode alternatives including, but not limited to travel times, and, in the case of public transport (PT), also walking distances have a major impact on whether a person decides to use a travel mode of interest. Hence, in this work, we propose an architecture of a software platform performing the data fusion combining data documenting journeys with the features calculated to summarise transport options available for these journeys, built environment and environmental factors such as weather conditions possibly influencing travel mode decisions. Furthermore, we propose various novel features, many of which we show to be among the most important for TMC prediction. We propose how stream processing engines and other Big Data systems can be used for their calculation. The data processed by the platform is used to develop machine learning models predicting travel mode choices. To validate the platform, we propose ablation studies investigating the importance of individual feature subsets calculated by it and their impact on the TMC models built with them. In our experiments, we combine survey data, GPS traces, weather and pollution time series, transport model data, and spatial data of the built environment. The growth in the accuracy of TMC models built with the additional features is up to 18.2% compared to the use of core survey data only.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - Reconsidering utility: unveiling the limitations of synthetic mobility data generation algorithms in real-life scenarios [49.1574468325115]
We evaluate the utility of five state-of-the-art synthesis approaches in terms of real-world applicability.
We focus on so-called trip data that encode fine granular urban movements such as GPS-tracked taxi rides.
One model fails to produce data within reasonable time and another generates too many jumps to meet the requirements for map matching.
arXiv Detail & Related papers (2024-07-03T16:08:05Z) - Hybrid Ensemble-Based Travel Mode Prediction [0.0]
Travel mode choice (TMC) prediction helps in understanding what makes citizens choose different modes of transport for individual trips.
As behaviour may evolve over time, we also face the question of detecting concept drift in the data.
This necessitates using appropriate methods to address potential concept drift.
arXiv Detail & Related papers (2024-04-22T09:32:38Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Euro-PVI: Pedestrian Vehicle Interactions in Dense Urban Centers [126.81938540470847]
We propose Euro-PVI, a dataset of pedestrian and bicyclist trajectories.
In this work, we develop a joint inference model that learns an expressive multi-modal shared latent space across agents in the urban scene.
We achieve state of the art results on the nuScenes and Euro-PVI datasets demonstrating the importance of capturing interactions between ego-vehicle and pedestrians (bicyclists) for accurate predictions.
arXiv Detail & Related papers (2021-06-22T15:40:21Z) - Large Scale Interactive Motion Forecasting for Autonomous Driving : The
Waymo Open Motion Dataset [84.3946567650148]
With over 100,000 scenes, each 20 seconds long at 10 Hz, our new dataset contains more than 570 hours of unique data over 1750 km of roadways.
We use a high-accuracy 3D auto-labeling system to generate high quality 3D bounding boxes for each road agent.
We introduce a new set of metrics that provides a comprehensive evaluation of both single agent and joint agent interaction motion forecasting models.
arXiv Detail & Related papers (2021-04-20T17:19:05Z) - What's Your Value of Travel Time? Collecting Traveler-Centered Mobility
Data via Crowdsourcing [4.297843164736973]
We build upon a different paradigm of worthwhile time in which travelers can use their travel time for other activities.
We present a new dataset, which contains data about travelers and their journeys, collected from a dedicated mobile application.
arXiv Detail & Related papers (2021-04-12T20:48:28Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
We propose a new data selection method that exploits a diverse set of criteria that quantize interestingness of traffic scenes.
Our experiments show that the proposed curation pipeline is able to select datasets that lead to better generalization and higher performance.
arXiv Detail & Related papers (2021-01-16T23:45:02Z) - A Data-Driven Analytical Framework of Estimating Multimodal Travel
Demand Patterns using Mobile Device Location Data [5.902556437760098]
This paper presents a data-driven analytical framework to extract multimodal travel demand patterns from smartphone location data.
A jointly trained single-layer model and deep neural network for travel mode imputation is developed.
The framework also incorporates the multimodal transportation network in order to evaluate the closeness of trip routes to the nearby rail, metro, highway and bus lines.
arXiv Detail & Related papers (2020-12-08T22:49:44Z) - Leveraging the Self-Transition Probability of Ordinal Pattern Transition
Graph for Transportation Mode Classification [0.0]
We propose the use of a feature retained from the Ordinal Pattern Transition Graph, called the probability of self-transition for transportation mode classification.
The proposed feature presents better accuracy results than Permutation Entropy and Statistical Complexity, even when these two are combined.
arXiv Detail & Related papers (2020-07-16T23:25:09Z) - A Data-Driven Travel Mode Share Estimation Framework based on Mobile
Device Location Data [5.767204062337505]
This paper studies the capability of MDLD on estimating travel mode share at aggregated levels.
A data-driven framework is proposed to extract travel behavior information from the MDLD.
The proposed framework is applied to two large-scale MDLD datasets.
arXiv Detail & Related papers (2020-06-17T17:57:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.