論文の概要: Differential contributions of machine learning and statistical analysis to language and cognitive sciences
- arxiv url: http://arxiv.org/abs/2404.14052v1
- Date: Mon, 22 Apr 2024 10:06:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 14:26:08.593539
- Title: Differential contributions of machine learning and statistical analysis to language and cognitive sciences
- Title(参考訳): 言語・認知科学における機械学習と統計的分析の差異
- Authors: Kun Sun, Rong Wang,
- Abstract要約: データ駆動のアプローチは科学研究に革命をもたらした。
機械学習と統計分析は、この種の研究で一般的に利用されている。
これらの違いを示すために一貫したデータセットを利用する研究はほとんどない。
- 参考スコア(独自算出の注目度): 27.152245569974678
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Data-driven approaches have revolutionized scientific research. Machine learning and statistical analysis are commonly utilized in this type of research. Despite their widespread use, these methodologies differ significantly in their techniques and objectives. Few studies have utilized a consistent dataset to demonstrate these differences within the social sciences, particularly in language and cognitive sciences. This study leverages the Buckeye Speech Corpus to illustrate how both machine learning and statistical analysis are applied in data-driven research to obtain distinct insights. This study significantly enhances our understanding of the diverse approaches employed in data-driven strategies.
- Abstract(参考訳): データ駆動のアプローチは科学研究に革命をもたらした。
機械学習と統計分析は、この種の研究で一般的に利用されている。
広く使われているにもかかわらず、これらの手法は彼らの技術や目的に大きく異なる。
社会科学、特に言語と認知科学におけるこれらの違いを示すために、一貫したデータセットを利用する研究はほとんどない。
この研究は、Buckeye Speech Corpusを利用して、機械学習と統計分析の両方をデータ駆動型研究に適用して、異なる洞察を得る方法を説明する。
本研究は,データ駆動戦略における多様なアプローチの理解を深めるものである。
関連論文リスト
- The dynamics of meaning through time: Assessment of Large Language Models [2.5864824580604515]
本研究では,様々な大規模言語モデル(LLM)が意味の時間的ダイナミクスを捉える能力を評価することを目的とする。
比較分析にはChatGPT、GPT-4、Claude、Bard、Gemini、Llamaといった著名なモデルが含まれています。
発見は、各モデルの歴史的文脈と意味的シフトの扱いにおいて顕著な違いを示し、時間的意味的理解における強みと制限の両方を強調した。
論文 参考訳(メタデータ) (2025-01-09T19:56:44Z) - Causal Inference Tools for a Better Evaluation of Machine Learning [0.0]
本稿では、通常最小方形回帰(OLS)、可変解析(ANOVA)、ロジスティック回帰(ロジスティック回帰)などの重要な統計手法を紹介する。
この文書は研究者や実践者のガイドとして機能し、これらのテクニックがモデル行動、パフォーマンス、公平性に対する深い洞察を提供する方法について詳述している。
論文 参考訳(メタデータ) (2024-10-02T10:03:29Z) - Revisiting Self-supervised Learning of Speech Representation from a
Mutual Information Perspective [68.20531518525273]
我々は、情報理論の観点から、既存の自己教師型音声の手法を詳しく検討する。
我々は線形プローブを用いて、対象情報と学習された表現の間の相互情報を推定する。
我々は、ラベルを使わずに、データの異なる部分間の相互情報を見積もる自己教師型の表現を評価する可能性を探る。
論文 参考訳(メタデータ) (2024-01-16T21:13:22Z) - Towards Interpretability in Audio and Visual Affective Machine Learning:
A Review [0.0]
我々は、感情的機械学習の文脈における解釈可能性の使用について、構造化された文献レビューを行う。
以上の結果から,過去5年間の解釈可能性手法の出現が示唆された。
現在、使用法は、使用方法の範囲、評価の深さ、使用事例の検討に限られている。
論文 参考訳(メタデータ) (2023-06-15T08:16:01Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
我々は、大規模言語モデル(LM)の助けを借りて、ピアレビューにおける公平性格差の徹底した厳密な研究を行う。
我々は、2017年から現在までのICLR(International Conference on Learning Representations)カンファレンスで、包括的なリレーショナルデータベースを収集、組み立て、維持しています。
我々は、著作者性別、地理、著作者、機関的名声など、興味のある複数の保護属性に対する公平性の違いを仮定し、研究する。
論文 参考訳(メタデータ) (2022-11-07T16:19:42Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
プラグイン推定と擬似出力回帰に依存する4つの幅広いメタ学習戦略を解析する。
この理論的推論を用いて、アルゴリズム設計の原則を導出し、分析を実践に翻訳する方法について強調する。
論文 参考訳(メタデータ) (2021-01-26T17:11:40Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - Targeting Learning: Robust Statistics for Reproducible Research [1.1455937444848387]
ターゲティング・ラーニング(Targeted Learning)は、因果推論、機械学習、統計理論の進歩を統一して、科学的に影響のある質問に統計的信頼性で答えるのに役立つ統計分野である。
ターゲット学習のロードマップは、仮説を最小化し、利用可能な科学的知識にのみ注意深く根ざすように、統計的手続きを調整することを強調する。
論文 参考訳(メタデータ) (2020-06-12T17:17:01Z) - A Survey on Causal Inference [64.45536158710014]
因果推論は統計学、コンピュータ科学、教育、公共政策、経済学など、多くの分野において重要な研究トピックである。
観測データに対する様々な因果効果推定法が誕生した。
論文 参考訳(メタデータ) (2020-02-05T21:35:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。