論文の概要: A review on data-driven constitutive laws for solids
- arxiv url: http://arxiv.org/abs/2405.03658v1
- Date: Mon, 6 May 2024 17:33:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 12:46:34.810197
- Title: A review on data-driven constitutive laws for solids
- Title(参考訳): データ駆動型固体構成則の概観
- Authors: Jan Niklas Fuhg, Govinda Anantha Padmanabha, Nikolaos Bouklas, Bahador Bahmani, WaiChing Sun, Nikolaos N. Vlassis, Moritz Flaschel, Pietro Carrara, Laura De Lorenzis,
- Abstract要約: この記事では、法律を発見し、エンコードし、代理し、エミュレートするための最先端のデータ駆動技術を強調します。
我々の目標は、過去数十年で開発された幅広い方法論に組織化された分類を提供することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This review article highlights state-of-the-art data-driven techniques to discover, encode, surrogate, or emulate constitutive laws that describe the path-independent and path-dependent response of solids. Our objective is to provide an organized taxonomy to a large spectrum of methodologies developed in the past decades and to discuss the benefits and drawbacks of the various techniques for interpreting and forecasting mechanics behavior across different scales. Distinguishing between machine-learning-based and model-free methods, we further categorize approaches based on their interpretability and on their learning process/type of required data, while discussing the key problems of generalization and trustworthiness. We attempt to provide a road map of how these can be reconciled in a data-availability-aware context. We also touch upon relevant aspects such as data sampling techniques, design of experiments, verification, and validation.
- Abstract(参考訳): 本稿では、固体の経路非依存および経路依存応答を記述する構成則を発見し、エンコードし、代理し、エミュレートする最先端のデータ駆動技術を紹介する。
本研究の目的は,過去数十年に開発された多種多様な方法論を組織的に分類し,様々なスケールで機械的挙動を解釈・予測するための様々な手法の利点と欠点を議論することである。
機械学習に基づく手法とモデルフリー手法を区別し,その解釈可能性と必要なデータの学習プロセス/タイプに基づいてアプローチを分類し,一般化と信頼性の鍵となる問題について議論する。
データ・アベイラビリティ・アウェア・コンテキストでこれらをどのように整理するかのロードマップを提供しようとしている。
また、データサンプリング技術、実験の設計、検証、検証など、関連する側面にも触れています。
関連論文リスト
- A review on discriminative self-supervised learning methods [6.24302896438145]
ラベルのないデータからロバストな特徴を抽出する手法として自己教師付き学習が登場した。
本稿では,コンピュータビジョン分野における自己教師型学習の差別的アプローチについて概説する。
論文 参考訳(メタデータ) (2024-05-08T11:15:20Z) - Revisiting Self-supervised Learning of Speech Representation from a
Mutual Information Perspective [68.20531518525273]
我々は、情報理論の観点から、既存の自己教師型音声の手法を詳しく検討する。
我々は線形プローブを用いて、対象情報と学習された表現の間の相互情報を推定する。
我々は、ラベルを使わずに、データの異なる部分間の相互情報を見積もる自己教師型の表現を評価する可能性を探る。
論文 参考訳(メタデータ) (2024-01-16T21:13:22Z) - Enhancing Explainability in Mobility Data Science through a combination
of methods [0.08192907805418582]
本稿では,重要なXAI技法を調和させる包括的フレームワークを提案する。
LIME Interpretable Model-a-gnostic Explanations, SHAP, Saliency Map, attention mechanism, direct trajectory Visualization, and Permutation Feature (PFI)
本研究の枠組みを検証するため,様々な利用者の嗜好や受容度を評価する調査を行った。
論文 参考訳(メタデータ) (2023-12-01T07:09:21Z) - Towards Trustworthy and Aligned Machine Learning: A Data-centric Survey
with Causality Perspectives [11.63431725146897]
機械学習の信頼性はこの分野において重要なトピックとして浮上している。
本調査は,一貫した概念集合を用いた信頼性の高い機械学習開発の背景を示す。
我々は,これらの手法を,堅牢性,敵対的堅牢性,解釈可能性,公正性にまたがる数学的語彙を持つ統一言語を提供する。
論文 参考訳(メタデータ) (2023-07-31T17:11:35Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
我々は,多視点表現学習における2つの重要な特徴を利用するために,様々な情報ボトルネックを設計する。
厳密な理論的保証の下で,本手法は,観察とセマンティックラベルの内在的相関の把握を可能にする。
論文 参考訳(メタデータ) (2022-06-20T03:09:46Z) - Model Positionality and Computational Reflexivity: Promoting Reflexivity
in Data Science [10.794642538442107]
データサイエンスの作業を理解するための枠組みを提供するために,位置性や反射性の概念をどのように適応させるかを説明する。
データサイエンスの仕事にこれらの概念を適用する上での課題について述べ,将来性のあるソリューションとしてアノテータのフィンガープリントと位置マイニングを提供する。
論文 参考訳(メタデータ) (2022-03-08T16:02:03Z) - Human-in-the-Loop Disinformation Detection: Stance, Sentiment, or
Something Else? [93.91375268580806]
政治とパンデミックは、機械学習対応の偽ニュース検出アルゴリズムの開発に十分な動機を与えている。
既存の文献は、主に完全自動化されたケースに焦点を当てているが、その結果得られた技術は、軍事応用に必要な様々なトピック、ソース、時間スケールに関する偽情報を確実に検出することはできない。
既に利用可能なアナリストを人間のループとして活用することにより、感情分析、アスペクトベースの感情分析、姿勢検出といった標準的な機械学習技術は、部分的に自動化された偽情報検出システムに使用するためのもっとも有効な方法となる。
論文 参考訳(メタデータ) (2021-11-09T13:30:34Z) - Self-Supervised Representation Learning: Introduction, Advances and
Challenges [125.38214493654534]
自己教師付き表現学習手法は、大きな注釈付きデータセットを必要とせずに強力な機能学習を提供することを目的としている。
本稿では、この活気ある領域について、鍵となる概念、アプローチの4つの主要なファミリーと関連する技術の状態、そして、データの多様性に自己監督手法を適用する方法について紹介する。
論文 参考訳(メタデータ) (2021-10-18T13:51:22Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
本稿では,名前付きエンティティ認識(NER)タスクに対する一般的な評価手法を提案する。
提案手法は,モデルとデータセットの違いと,それらの間の相互作用を解釈することを可能にする。
分析ツールを利用可能にすることで、将来の研究者が同様の分析を実行し、この分野の進歩を促進することができる。
論文 参考訳(メタデータ) (2020-11-13T10:53:27Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
既存の説明可能性技術を評価するための診断特性のリストを作成する。
そこで本研究では, モデルの性能と有理性との整合性の関係を明らかにするために, 説明可能性手法によって割り当てられた有理性スコアと有理性入力領域の人間のアノテーションを比較した。
論文 参考訳(メタデータ) (2020-09-25T12:01:53Z) - Ontology-based Interpretable Machine Learning for Textual Data [35.01650633374998]
本稿では,予測モデルを説明するためのサンプリング手法に基づいて,解釈可能なモデルを学習する新しい解釈フレームワークを提案する。
説明のために探索空間を狭めるために,学習可能なアンカーアルゴリズムを設計する。
さらに、学習された解釈可能な表現とアンカーを組み合わせることで、理解可能な説明を生成する一連の規則が導入された。
論文 参考訳(メタデータ) (2020-04-01T02:51:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。