Cavity-enhanced Kondo effect
- URL: http://arxiv.org/abs/2404.14148v1
- Date: Mon, 22 Apr 2024 12:55:33 GMT
- Title: Cavity-enhanced Kondo effect
- Authors: Jun Mochida, Yuto Ashida,
- Abstract summary: In metals containing magnetic impurities, conduction electrons screen the magnetic impurities and induce the Kondo effect.
Motivated by recent advances in manipulating quantum materials by cavity confinement, we study how the ultrastrong light-matter coupling can affect the Kondo effect.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In metals containing magnetic impurities, conduction electrons screen the magnetic impurities and induce the Kondo effect, i.e., the enhancement of the electrical resistance at low temperatures. Motivated by recent advances in manipulating quantum materials by cavity confinement, we study how the ultrastrong light-matter coupling can affect the Kondo effect. We show that the ultrastrong coupling can enhance the Kondo temperature and give rise to several notable phenomena, including universal scalings of the cavity-modified Kondo effect, the photon occupation number, and the entanglement entropy between the cavity and electrons. The origin of the cavity enhancement can be understood from the mass renormalization due to the cavity-mediated nonlocal electron-electron interaction, which is akin to the polaronic mass enhancement. We combine the unitary transformations and the Gaussian variational states to analyze the quantum impurity system confined in the cavity. Our nonperturbative framework can be applied to a variety of quantum impurity problems influenced by structured quantum electromagnetic environment.
Related papers
- Cavity Moiré Materials: Controlling Magnetic Frustration with Quantum Light-Matter Interaction [0.0]
We develop a theory of moir'e materials confined in a cavity consisting of thin polar van der Waals crystals.
Nontrivial quantum geometry of moir'e flat bands leads to electromagnetic vacuum dressing of electrons.
Results indicate that the cavity confinement enables one to control magnetic frustration of moir'e materials.
arXiv Detail & Related papers (2023-02-22T19:00:01Z) - Local Fluctuations in Cavity Control of Ferroelectricity [0.0]
We study a quantum paraelectric sandwiched between two high-quality metal mirrors.
We find that once a continuum of transverse modes are included the cavity ends up suppressing ferroelectric correlations.
Our results are based on a general formalism and are expected to be widely applicable.
arXiv Detail & Related papers (2023-01-05T02:55:52Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Purcell-enhanced dipolar interactions in nanostructures [0.0]
Strong light-induced interactions between atoms are known to cause nonlinearities at a few-photon level.
Here, we combine the high densities achievable in thermal atomic vapors with an efficient coupling to a slot waveguide.
The results pave the way towards a robust scalable platform for quantum nonlinear optics and all-optical quantum information processing at room temperature.
arXiv Detail & Related papers (2021-12-21T13:11:59Z) - A background-free optically levitated charge sensor [50.591267188664666]
We introduce a new technique to model and eliminate dipole moment interactions limiting the performance of sensors employing levitated objects.
As a demonstration, this is applied to the search for unknown charges of a magnitude much below that of an electron.
As a by-product of the technique, the electromagnetic properties of the levitated objects can also be measured on an individual basis.
arXiv Detail & Related papers (2021-12-20T08:16:28Z) - Demonstration of electron-nuclear decoupling at a spin clock transition [54.088309058031705]
Clock transitions protect molecular spin qubits from magnetic noise.
linear coupling to nuclear degrees of freedom causes a modulation and decay of electronic coherence.
An absence of quantum information leakage to the nuclear bath provides opportunities to characterize other decoherence sources.
arXiv Detail & Related papers (2021-06-09T16:23:47Z) - Electric field induced tuning of electronic correlation in weakly
confining quantum dots [0.0]
We conduct a combined experimental and theoretical study of the quantum-confined Stark effect in GaAs/AlGaAs quantum dots obtained with the local droplet etching method.
We probe the permanent electric dipole and polarizability of neutral and positively charged excitons weakly confined in GaAs quantum dots by measuring their light emission under the influence of a variable electric field applied along the growth direction.
arXiv Detail & Related papers (2021-05-24T12:42:40Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z) - Quantum Electrodynamic Control of Matter: Cavity-Enhanced Ferroelectric
Phase Transition [0.0]
We study a dipolar quantum many-body system embedded in a cavity composed of metal mirrors.
We analyze hybridization of different types of the fundamental excitations, including dipolar phonons, cavity photons, and plasmons in metal mirrors.
Our findings suggest an intriguing possibility of inducing a superradiant-type transition via the light-matter coupling without external pumping.
arXiv Detail & Related papers (2020-03-30T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.