Electric field induced tuning of electronic correlation in weakly
confining quantum dots
- URL: http://arxiv.org/abs/2105.11244v4
- Date: Mon, 14 Feb 2022 17:58:53 GMT
- Title: Electric field induced tuning of electronic correlation in weakly
confining quantum dots
- Authors: Huiying Huang, Diana Csontosov\'a, Santanu Manna, Yongheng Huo,
Rinaldo Trotta, Armando Rastelli and Petr Klenovsk\'y
- Abstract summary: We conduct a combined experimental and theoretical study of the quantum-confined Stark effect in GaAs/AlGaAs quantum dots obtained with the local droplet etching method.
We probe the permanent electric dipole and polarizability of neutral and positively charged excitons weakly confined in GaAs quantum dots by measuring their light emission under the influence of a variable electric field applied along the growth direction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We conduct a combined experimental and theoretical study of the
quantum-confined Stark effect in GaAs/AlGaAs quantum dots obtained with the
local droplet etching method. In the experiment, we probe the permanent
electric dipole and polarizability of neutral and positively charged excitons
weakly confined in GaAs quantum dots by measuring their light emission under
the influence of a variable electric field applied along the growth direction.
Calculations based on the configuration-interaction method show excellent
quantitative agreement with the experiment and allow us to elucidate the role
of Coulomb interactions among the confined particles and -- even more
importantly -- of electronic correlation effects on the Stark shifts. Moreover,
we show how the electric field alters properties such as built-in dipole,
binding energy, and heavy-light hole mixing of multiparticle complexes in
weakly confining systems, underlining the deficiencies of commonly used models
for the quantum-confined Stark effect.
Related papers
- Cavity-enhanced Kondo effect [0.0]
In metals containing magnetic impurities, conduction electrons screen the magnetic impurities and induce the Kondo effect.
Motivated by recent advances in manipulating quantum materials by cavity confinement, we study how the ultrastrong light-matter coupling can affect the Kondo effect.
arXiv Detail & Related papers (2024-04-22T12:55:33Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Cooperative effects in dense cold atomic gases including magnetic dipole
interactions [0.0]
We investigate cooperative effects in cold atomic gases exhibiting both electric and magnetic dipole-dipole interactions.
For quantum degenerate gases, we study the interplay between sub- and superradiance effects and the fermionic or bosonic quantum statistics nature of the ensemble.
arXiv Detail & Related papers (2023-06-20T12:17:07Z) - Local Fluctuations in Cavity Control of Ferroelectricity [0.0]
We study a quantum paraelectric sandwiched between two high-quality metal mirrors.
We find that once a continuum of transverse modes are included the cavity ends up suppressing ferroelectric correlations.
Our results are based on a general formalism and are expected to be widely applicable.
arXiv Detail & Related papers (2023-01-05T02:55:52Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Electrical Control of Quantum Emitters in a Van der Waals
Heterostructure [2.239998253134085]
We show an approach to electrically modulate quantum emitters in n hBN graphene van der Waals heterostructure.
Notably, a significant number of quantum emitters are intrinsically dark, and become optically active at non-zero voltages.
Our results enhance the potential of hBN for tuneable solid state quantum emitters for the growing field of quantum information science.
arXiv Detail & Related papers (2021-11-04T11:03:53Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Molecular Interactions Induced by a Static Electric Field in Quantum
Mechanics and Quantum Electrodynamics [68.98428372162448]
We study the interaction between two neutral atoms or molecules subject to a uniform static electric field.
Our focus is to understand the interplay between leading contributions to field-induced electrostatics/polarization and dispersion interactions.
arXiv Detail & Related papers (2021-03-30T14:45:30Z) - Waveguide quantum electrodynamics: collective radiance and photon-photon
correlations [151.77380156599398]
Quantum electrodynamics deals with the interaction of photons propagating in a waveguide with localized quantum emitters.
We focus on guided photons and ordered arrays, leading to super- and sub-radiant states, bound photon states and quantum correlations with promising quantum information applications.
arXiv Detail & Related papers (2021-03-11T17:49:52Z) - Chemical tuning of spin clock transitions in molecular monomers based on
nuclear spin-free Ni(II) [52.259804540075514]
We report the existence of a sizeable quantum tunnelling splitting between the two lowest electronic spin levels of mononuclear Ni complexes.
The level anti-crossing, or magnetic clock transition, associated with this gap has been directly monitored by heat capacity experiments.
The comparison of these results with those obtained for a Co derivative, for which tunnelling is forbidden by symmetry, shows that the clock transition leads to an effective suppression of intermolecular spin-spin interactions.
arXiv Detail & Related papers (2021-03-04T13:31:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.