論文の概要: Beyond the Edge: An Advanced Exploration of Reinforcement Learning for Mobile Edge Computing, its Applications, and Future Research Trajectories
- arxiv url: http://arxiv.org/abs/2404.14238v1
- Date: Mon, 22 Apr 2024 14:47:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 13:47:08.894523
- Title: Beyond the Edge: An Advanced Exploration of Reinforcement Learning for Mobile Edge Computing, its Applications, and Future Research Trajectories
- Title(参考訳): Beyond the Edge: モバイルエッジコンピューティングのための強化学習の先進的な探索とその応用と今後の研究軌道
- Authors: Ning Yang, Shuo Chen, Haijun Zhang, Randall Berry,
- Abstract要約: Mobile Edge Computing (MEC)は、中央ネットワークを超えて計算とストレージの範囲を広げる。
リアルタイムで高品質なサービスを必要とするアプリケーションの出現は、低レイテンシ、高いデータレート、信頼性、効率、セキュリティなど、いくつかの課題をもたらしている。
本稿では,これらの問題を緩和する特定のRL手法を提案し,その実践的応用について考察する。
- 参考スコア(独自算出の注目度): 13.08054996040995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mobile Edge Computing (MEC) broadens the scope of computation and storage beyond the central network, incorporating edge nodes close to end devices. This expansion facilitates the implementation of large-scale "connected things" within edge networks. The advent of applications necessitating real-time, high-quality service presents several challenges, such as low latency, high data rate, reliability, efficiency, and security, all of which demand resolution. The incorporation of reinforcement learning (RL) methodologies within MEC networks promotes a deeper understanding of mobile user behaviors and network dynamics, thereby optimizing resource use in computing and communication processes. This paper offers an exhaustive survey of RL applications in MEC networks, initially presenting an overview of RL from its fundamental principles to the latest advanced frameworks. Furthermore, it outlines various RL strategies employed in offloading, caching, and communication within MEC networks. Finally, it explores open issues linked with software and hardware platforms, representation, RL robustness, safe RL, large-scale scheduling, generalization, security, and privacy. The paper proposes specific RL techniques to mitigate these issues and provides insights into their practical applications.
- Abstract(参考訳): Mobile Edge Computing (MEC)は、エッジノードをエンドデバイスに近づけることで、中央ネットワークを越えて計算とストレージの範囲を広げる。
この拡張により、エッジネットワーク内での大規模"コネクテッドモノ"の実装が容易になる。
リアルタイムで高品質なサービスを必要とするアプリケーションの出現は、低レイテンシ、高いデータレート、信頼性、効率性、セキュリティなど、さまざまな課題をもたらします。
MECネットワークにおける強化学習(RL)手法の導入は,モバイルユーザ行動やネットワークダイナミクスの理解を深め,コンピューティングや通信プロセスにおけるリソース利用を最適化する。
本稿では,MEC ネットワークにおける RL アプリケーションの概要を概観し,その基本原理から最新のフレームワークまでの概要を述べる。
さらに、MECネットワーク内のオフロード、キャッシュ、通信に使用される様々なRL戦略を概説する。
最後に、ソフトウェアとハードウェアプラットフォーム、表現、RL堅牢性、安全なRL、大規模スケジューリング、一般化、セキュリティ、プライバシに関連するオープンな問題について検討する。
本稿では,これらの問題を緩和する特定のRL手法を提案し,その実践的応用について考察する。
関連論文リスト
- Multiple Access in the Era of Distributed Computing and Edge Intelligence [23.65754442262314]
まず,マルチアクセスエッジコンピューティング(MEC)について検討し,ネットワークのエッジにおけるデータ処理と計算能力の増大に対応するために重要である。
次に,様々な関数を高速かつ効率的に計算する手法として,OTA(Over-the-air)コンピューティングについて検討する。
機械学習(ML)とマルチアクセステクノロジの分離についても、フェデレーションラーニング、強化ラーニング、MLベースのマルチアクセスプロトコルの開発に重点が置かれている。
論文 参考訳(メタデータ) (2024-02-26T11:04:04Z) - Age-Based Scheduling for Mobile Edge Computing: A Deep Reinforcement
Learning Approach [58.911515417156174]
我々は情報時代(AoI)の新たな定義を提案し、再定義されたAoIに基づいて、MECシステムにおけるオンラインAoI問題を定式化する。
本稿では,システム力学の部分的知識を活用するために,PDS(Post-Decision State)を導入する。
また、PSDと深いRLを組み合わせることで、アルゴリズムの適用性、スケーラビリティ、堅牢性をさらに向上します。
論文 参考訳(メタデータ) (2023-12-01T01:30:49Z) - MARLIN: Soft Actor-Critic based Reinforcement Learning for Congestion
Control in Real Networks [63.24965775030673]
そこで本研究では,汎用的な渋滞制御(CC)アルゴリズムを設計するための新しい強化学習(RL)手法を提案する。
我々の解であるMARLINは、Soft Actor-Criticアルゴリズムを用いてエントロピーとリターンの両方を最大化する。
我々は,MARLINを実ネットワーク上で訓練し,実ミスマッチを克服した。
論文 参考訳(メタデータ) (2023-02-02T18:27:20Z) - Machine Learning-Based User Scheduling in Integrated
Satellite-HAPS-Ground Networks [82.58968700765783]
第6世代通信ネットワーク(6G)の強化のための価値あるソリューション空間の提供を約束する。
本稿では,空対地統合通信におけるユーザスケジューリングにおける機械学習の可能性について述べる。
論文 参考訳(メタデータ) (2022-05-27T13:09:29Z) - Reinforcement Learning Framework for Server Placement and Workload
Allocation in Multi-Access Edge Computing [9.598394554018164]
本稿では,最小コストでMEC設計を実現するために,ネットワーク遅延とエッジサーバ数の両方を最小化する問題に対処する。
本稿では,この問題を解決するためのマルコフ決定プロセス(MDP)の設計において,状態空間,行動空間,ペナルティ関数の効率的な表現とモデル化を行う新しいRLフレームワークを提案する。
論文 参考訳(メタデータ) (2022-02-21T03:04:50Z) - Reinforcement Learning-Empowered Mobile Edge Computing for 6G Edge
Intelligence [76.96698721128406]
モバイルエッジコンピューティング(MEC)は、第5世代(5G)ネットワークなどにおける計算と遅延に敏感なタスクのための新しいパラダイムであると考えた。
本稿では、フリー対応RLに関する総合的な研究レビューと、開発のための洞察を提供する。
論文 参考訳(メタデータ) (2022-01-27T10:02:54Z) - Federated Learning over Wireless IoT Networks with Optimized
Communication and Resources [98.18365881575805]
協調学習技術のパラダイムとしてのフェデレートラーニング(FL)は研究の注目を集めている。
無線システム上での高速応答および高精度FLスキームの検証が重要である。
提案する通信効率のよいフェデレーション学習フレームワークは,強い線形速度で収束することを示す。
論文 参考訳(メタデータ) (2021-10-22T13:25:57Z) - A Survey on Reinforcement Learning-Aided Caching in Mobile Edge Networks [12.470038211838363]
モバイルネットワークは、データ量とユーザ密度が大幅に増加している。
この問題を軽減する効率的な手法は、エッジネットワークノードのキャッシュを利用してデータをユーザに近づけることである。
機械学習とワイヤレスネットワークの融合は、ネットワーク最適化に有効な手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T10:30:56Z) - Edge Intelligence for Energy-efficient Computation Offloading and
Resource Allocation in 5G Beyond [7.953533529450216]
さらに5Gは、エッジデバイス、エッジサーバ、クラウドの異種機能を活用可能な、エッジクラウドオーケストレーションネットワークである。
マルチユーザ無線ネットワークでは、多様なアプリケーション要件とデバイス間の通信のための様々な無線アクセスモードの可能性により、最適な計算オフロード方式の設計が困難になる。
深層強化学習(Dep Reinforcement Learning, DRL)は、そのような問題に限定的で精度の低いネットワーク情報で対処する新興技術である。
論文 参考訳(メタデータ) (2020-11-17T05:51:03Z) - Deep Learning for Ultra-Reliable and Low-Latency Communications in 6G
Networks [84.2155885234293]
まず,データ駆動型教師付き深層学習と深部強化学習をURLLCに適用する方法を概説する。
このようなオープンな問題に対処するために、デバイスインテリジェンス、エッジインテリジェンス、およびURLLCのためのクラウドインテリジェンスを可能にするマルチレベルアーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-02-22T14:38:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。