Co-designing a Sub-millisecond Latency Event-based Eye Tracking System with Submanifold Sparse CNN
- URL: http://arxiv.org/abs/2404.14279v1
- Date: Mon, 22 Apr 2024 15:28:42 GMT
- Title: Co-designing a Sub-millisecond Latency Event-based Eye Tracking System with Submanifold Sparse CNN
- Authors: Baoheng Zhang, Yizhao Gao, Jingyuan Li, Hayden Kwok-Hay So,
- Abstract summary: Eye-tracking technology is integral to numerous consumer electronics applications, particularly in virtual and augmented reality (VR/AR)
Yet, achieving optimal performance across all these fronts presents a formidable challenge.
We tackle this challenge through a synergistic software/ hardware co-design of the system with an event camera.
Our system achieves 81% p5 accuracy, 99.5% p10 accuracy, and 3.71 Meanean Distance with 0.7 ms latency while only consuming 2.29 mJ per inference.
- Score: 8.613703056677457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Eye-tracking technology is integral to numerous consumer electronics applications, particularly in the realm of virtual and augmented reality (VR/AR). These applications demand solutions that excel in three crucial aspects: low-latency, low-power consumption, and precision. Yet, achieving optimal performance across all these fronts presents a formidable challenge, necessitating a balance between sophisticated algorithms and efficient backend hardware implementations. In this study, we tackle this challenge through a synergistic software/hardware co-design of the system with an event camera. Leveraging the inherent sparsity of event-based input data, we integrate a novel sparse FPGA dataflow accelerator customized for submanifold sparse convolution neural networks (SCNN). The SCNN implemented on the accelerator can efficiently extract the embedding feature vector from each representation of event slices by only processing the non-zero activations. Subsequently, these vectors undergo further processing by a gated recurrent unit (GRU) and a fully connected layer on the host CPU to generate the eye centers. Deployment and evaluation of our system reveal outstanding performance metrics. On the Event-based Eye-Tracking-AIS2024 dataset, our system achieves 81% p5 accuracy, 99.5% p10 accuracy, and 3.71 Mean Euclidean Distance with 0.7 ms latency while only consuming 2.29 mJ per inference. Notably, our solution opens up opportunities for future eye-tracking systems. Code is available at https://github.com/CASR-HKU/ESDA/tree/eye_tracking.
Related papers
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
Decentralized training faces significant challenges regarding system design and efficiency.
We present FusionLLM, a decentralized training system designed and implemented for training large deep neural networks (DNNs)
We show that our system and method can achieve 1.45 - 9.39x speedup compared to baseline methods while ensuring convergence.
arXiv Detail & Related papers (2024-10-16T16:13:19Z) - Embedded Graph Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs [0.815557531820863]
Event cameras find significant relevance for their integration into embedded real-time systems.
One effective approach to ensure the necessary throughput and latency for event processing systems is through the utilisation of graph convolutional networks (GCNs)
We introduce a series of hardware-aware optimisations tailored for PointNet++, a GCN architecture designed for point cloud processing.
arXiv Detail & Related papers (2024-06-11T14:47:36Z) - EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision [0.06752396542927405]
Event-driven graph neural networks (GNNs) have emerged as a promising solution for sparse event-based vision.
We propose EvGNN, the first event-driven GNN accelerator for low-footprint, ultra-low-latency, and high-accuracy edge vision.
arXiv Detail & Related papers (2024-04-30T12:18:47Z) - A Lightweight Spatiotemporal Network for Online Eye Tracking with Event Camera [0.8576354642891824]
Event-based data are commonly encountered in edge computing environments where efficiency and low latency are critical.
To interface with such data and leverage their rich temporal temporal, we propose a causal convolutional network.
We apply our model on the AIS 2024 event-based eye tracking challenge, reaching a score of 0.9916 p10 accuracy on the Kaggle private testset.
arXiv Detail & Related papers (2024-04-13T00:13:20Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
We propose DyTrack, a dynamic transformer framework for efficient tracking.
DyTrack automatically learns to configure proper reasoning routes for various inputs, gaining better utilization of the available computational budget.
Experiments on multiple benchmarks demonstrate that DyTrack achieves promising speed-precision trade-offs with only a single model.
arXiv Detail & Related papers (2024-03-26T12:31:58Z) - Ev-Edge: Efficient Execution of Event-based Vision Algorithms on Commodity Edge Platforms [10.104371980353973]
Ev-Edge is a framework that contains three key optimizations to boost the performance of event-based vision systems on edge platforms.
On several state-of-art networks for a range of autonomous navigation tasks, Ev-Edge achieves 1.28x-2.05x improvements in latency and 1.23x-2.15x in energy.
arXiv Detail & Related papers (2024-03-23T04:44:55Z) - Speck: A Smart event-based Vision Sensor with a low latency 327K Neuron Convolutional Neuronal Network Processing Pipeline [5.8859061623552975]
We present a smart vision sensor System on Chip (SoC), featuring an event-based camera and a low-power asynchronous spiking Convolutional Neural Network (sCNN) computing architecture embedded on a single chip.
By combining both sensor and processing on a single die, we can lower unit production costs significantly.
We present the asynchronous architecture, the individual blocks, and the sCNN processing principle and benchmark against other sCNN capable processors.
arXiv Detail & Related papers (2023-04-13T19:28:57Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Multi-Exit Semantic Segmentation Networks [78.44441236864057]
We propose a framework for converting state-of-the-art segmentation models to MESS networks.
specially trained CNNs that employ parametrised early exits along their depth to save during inference on easier samples.
We co-optimise the number, placement and architecture of the attached segmentation heads, along with the exit policy, to adapt to the device capabilities and application-specific requirements.
arXiv Detail & Related papers (2021-06-07T11:37:03Z) - FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation [81.76975488010213]
Dense optical flow estimation plays a key role in many robotic vision tasks.
Current networks often occupy large number of parameters and require heavy computation costs.
Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations.
arXiv Detail & Related papers (2021-03-08T03:09:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.