EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision
- URL: http://arxiv.org/abs/2404.19489v1
- Date: Tue, 30 Apr 2024 12:18:47 GMT
- Title: EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision
- Authors: Yufeng Yang, Adrian Kneip, Charlotte Frenkel,
- Abstract summary: Event-driven graph neural networks (GNNs) have emerged as a promising solution for sparse event-based vision.
We propose EvGNN, the first event-driven GNN accelerator for low-footprint, ultra-low-latency, and high-accuracy edge vision.
- Score: 0.06752396542927405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Edge vision systems combining sensing and embedded processing promise low-latency, decentralized, and energy-efficient solutions that forgo reliance on the cloud. As opposed to conventional frame-based vision sensors, event-based cameras deliver a microsecond-scale temporal resolution with sparse information encoding, thereby outlining new opportunities for edge vision systems. However, mainstream algorithms for frame-based vision, which mostly rely on convolutional neural networks (CNNs), can hardly exploit the advantages of event-based vision as they are typically optimized for dense matrix-vector multiplications. While event-driven graph neural networks (GNNs) have recently emerged as a promising solution for sparse event-based vision, their irregular structure is a challenge that currently hinders the design of efficient hardware accelerators. In this paper, we propose EvGNN, the first event-driven GNN accelerator for low-footprint, ultra-low-latency, and high-accuracy edge vision with event-based cameras. It relies on three central ideas: (i) directed dynamic graphs exploiting single-hop nodes with edge-free storage, (ii) event queues for the efficient identification of local neighbors within a spatiotemporally decoupled search range, and (iii) a novel layer-parallel processing scheme enabling the low-latency execution of multi-layer GNNs. We deployed EvGNN on a Xilinx KV260 Ultrascale+ MPSoC platform and benchmarked it on the N-CARS dataset for car recognition, demonstrating a classification accuracy of 87.8% and an average latency per event of 16$\mu$s, thereby enabling real-time, microsecond-resolution event-based vision at the edge.
Related papers
- Embedded Graph Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs [0.815557531820863]
Event cameras find significant relevance for their integration into embedded real-time systems.
One effective approach to ensure the necessary throughput and latency for event processing systems is through the utilisation of graph convolutional networks (GCNs)
We introduce a series of hardware-aware optimisations tailored for PointNet++, a GCN architecture designed for point cloud processing.
arXiv Detail & Related papers (2024-06-11T14:47:36Z) - Co-designing a Sub-millisecond Latency Event-based Eye Tracking System with Submanifold Sparse CNN [8.613703056677457]
Eye-tracking technology is integral to numerous consumer electronics applications, particularly in virtual and augmented reality (VR/AR)
Yet, achieving optimal performance across all these fronts presents a formidable challenge.
We tackle this challenge through a synergistic software/ hardware co-design of the system with an event camera.
Our system achieves 81% p5 accuracy, 99.5% p10 accuracy, and 3.71 Meanean Distance with 0.7 ms latency while only consuming 2.29 mJ per inference.
arXiv Detail & Related papers (2024-04-22T15:28:42Z) - Ev-Edge: Efficient Execution of Event-based Vision Algorithms on Commodity Edge Platforms [10.104371980353973]
Ev-Edge is a framework that contains three key optimizations to boost the performance of event-based vision systems on edge platforms.
On several state-of-art networks for a range of autonomous navigation tasks, Ev-Edge achieves 1.28x-2.05x improvements in latency and 1.23x-2.15x in energy.
arXiv Detail & Related papers (2024-03-23T04:44:55Z) - Automotive Object Detection via Learning Sparse Events by Spiking Neurons [20.930277906912394]
Spiking Neural Networks (SNNs) provide a temporal representation that is inherently aligned with event-based data.
We present a specialized spiking feature pyramid network (SpikeFPN) optimized for automotive event-based object detection.
arXiv Detail & Related papers (2023-07-24T15:47:21Z) - HALSIE: Hybrid Approach to Learning Segmentation by Simultaneously
Exploiting Image and Event Modalities [6.543272301133159]
Event cameras detect changes in per-pixel intensity to generate asynchronous event streams.
They offer great potential for accurate semantic map retrieval in real-time autonomous systems.
Existing implementations for event segmentation suffer from sub-based performance.
We propose hybrid end-to-end learning framework HALSIE to reduce inference cost by up to $20times$ versus art.
arXiv Detail & Related papers (2022-11-19T17:09:50Z) - Fluid Batching: Exit-Aware Preemptive Serving of Early-Exit Neural
Networks on Edge NPUs [74.83613252825754]
"smart ecosystems" are being formed where sensing happens concurrently rather than standalone.
This is shifting the on-device inference paradigm towards deploying neural processing units (NPUs) at the edge.
We propose a novel early-exit scheduling that allows preemption at run time to account for the dynamicity introduced by the arrival and exiting processes.
arXiv Detail & Related papers (2022-09-27T15:04:01Z) - AEGNN: Asynchronous Event-based Graph Neural Networks [54.528926463775946]
Event-based Graph Neural Networks generalize standard GNNs to process events as "evolving"-temporal graphs.
AEGNNs are easily trained on synchronous inputs and can be converted to efficient, "asynchronous" networks at test time.
arXiv Detail & Related papers (2022-03-31T16:21:12Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDAR-based 3D object detection is an important task for autonomous driving.
Current approaches suffer from sparse and partial point clouds of distant and occluded objects.
In this paper, we propose a novel two-stage approach, namely PC-RGNN, dealing with such challenges by two specific solutions.
arXiv Detail & Related papers (2020-12-18T18:06:43Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.