Embedded Graph Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs
- URL: http://arxiv.org/abs/2406.07318v1
- Date: Tue, 11 Jun 2024 14:47:36 GMT
- Title: Embedded Graph Convolutional Networks for Real-Time Event Data Processing on SoC FPGAs
- Authors: Kamil Jeziorek, Piotr Wzorek, Krzysztof Blachut, Andrea Pinna, Tomasz Kryjak,
- Abstract summary: Event cameras find significant relevance for their integration into embedded real-time systems.
One effective approach to ensure the necessary throughput and latency for event processing systems is through the utilisation of graph convolutional networks (GCNs)
We introduce a series of hardware-aware optimisations tailored for PointNet++, a GCN architecture designed for point cloud processing.
- Score: 0.815557531820863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The utilisation of event cameras represents an important and swiftly evolving trend aimed at addressing the constraints of traditional video systems. Particularly within the automotive domain, these cameras find significant relevance for their integration into embedded real-time systems due to lower latency and energy consumption. One effective approach to ensure the necessary throughput and latency for event processing systems is through the utilisation of graph convolutional networks (GCNs). In this study, we introduce a series of hardware-aware optimisations tailored for PointNet++, a GCN architecture designed for point cloud processing. The proposed techniques result in more than a 100-fold reduction in model size compared to Asynchronous Event-based GNN (AEGNN), one of the most recent works in the field, with a relatively small decrease in accuracy (2.3% for N-Caltech101 classification, 1.7% for N-Cars classification), thus following the TinyML trend. Based on software research, we designed a custom EFGCN (Event-Based FPGA-accelerated Graph Convolutional Network) and we implemented it on ZCU104 SoC FPGA platform, achieving a throughput of 13.3 million events per second (MEPS) and real-time partially asynchronous processing with a latency of 4.47 ms. We also address the scalability of the proposed hardware model to improve the obtained accuracy score. To the best of our knowledge, this study marks the first endeavour in accelerating PointNet++ networks on SoC FPGAs, as well as the first hardware architecture exploration of graph convolutional networks implementation for real-time continuous event data processing. We publish both software and hardware source code in an open repository: https://github.com/vision-agh/*** (will be published upon acceptance).
Related papers
- EvGNN: An Event-driven Graph Neural Network Accelerator for Edge Vision [0.06752396542927405]
Event-driven graph neural networks (GNNs) have emerged as a promising solution for sparse event-based vision.
We propose EvGNN, the first event-driven GNN accelerator for low-footprint, ultra-low-latency, and high-accuracy edge vision.
arXiv Detail & Related papers (2024-04-30T12:18:47Z) - Co-designing a Sub-millisecond Latency Event-based Eye Tracking System with Submanifold Sparse CNN [8.613703056677457]
Eye-tracking technology is integral to numerous consumer electronics applications, particularly in virtual and augmented reality (VR/AR)
Yet, achieving optimal performance across all these fronts presents a formidable challenge.
We tackle this challenge through a synergistic software/ hardware co-design of the system with an event camera.
Our system achieves 81% p5 accuracy, 99.5% p10 accuracy, and 3.71 Meanean Distance with 0.7 ms latency while only consuming 2.29 mJ per inference.
arXiv Detail & Related papers (2024-04-22T15:28:42Z) - Graph Transformers for Large Graphs [57.19338459218758]
This work advances representation learning on single large-scale graphs with a focus on identifying model characteristics and critical design constraints.
A key innovation of this work lies in the creation of a fast neighborhood sampling technique coupled with a local attention mechanism.
We report a 3x speedup and 16.8% performance gain on ogbn-products and snap-patents, while we also scale LargeGT on ogbn-100M with a 5.9% performance improvement.
arXiv Detail & Related papers (2023-12-18T11:19:23Z) - Communication-Efficient Graph Neural Networks with Probabilistic
Neighborhood Expansion Analysis and Caching [59.8522166385372]
Training and inference with graph neural networks (GNNs) on massive graphs has been actively studied since the inception of GNNs.
This paper is concerned with minibatch training and inference with GNNs that employ node-wise sampling in distributed settings.
We present SALIENT++, which extends the prior state-of-the-art SALIENT system to work with partitioned feature data.
arXiv Detail & Related papers (2023-05-04T21:04:01Z) - End-to-end codesign of Hessian-aware quantized neural networks for FPGAs
and ASICs [49.358119307844035]
We develop an end-to-end workflow for the training and implementation of co-designed neural networks (NNs)
This makes efficient NN implementations in hardware accessible to nonexperts, in a single open-sourced workflow.
We demonstrate the workflow in a particle physics application involving trigger decisions that must operate at the 40 MHz collision rate of the Large Hadron Collider (LHC)
We implement an optimized mixed-precision NN for high-momentum particle jets in simulated LHC proton-proton collisions.
arXiv Detail & Related papers (2023-04-13T18:00:01Z) - HARFLOW3D: A Latency-Oriented 3D-CNN Accelerator Toolflow for HAR on
FPGA Devices [71.45672882756001]
This study introduces a novel streaming architecture based toolflow for mapping 3D Convolutional Neural Networks onto FPGAs.
The HARFLOW3D toolflow takes as input a 3D CNN in ONNX format and a description of the FPGA characteristics.
The ability of the toolflow to support a broad range of models and devices is shown through a number of experiments on various 3D CNN and FPGA system pairs.
arXiv Detail & Related papers (2023-03-30T08:25:27Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - AEGNN: Asynchronous Event-based Graph Neural Networks [54.528926463775946]
Event-based Graph Neural Networks generalize standard GNNs to process events as "evolving"-temporal graphs.
AEGNNs are easily trained on synchronous inputs and can be converted to efficient, "asynchronous" networks at test time.
arXiv Detail & Related papers (2022-03-31T16:21:12Z) - Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle
Reconstruction in High Energy Physics [11.125632758828266]
We discuss how to design distance-weighted graph networks that can be executed with a latency of less than 1$mumathrms$ on an FPGA.
We consider a representative task associated to particle reconstruction and identification in a next-generation calorimeter operating at a particle collider.
We convert the compressed models into firmware to be implemented on an FPGA.
arXiv Detail & Related papers (2020-08-08T21:26:31Z) - GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms [1.2183405753834562]
Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs.
It is challenging to accelerate training of GCNs due to substantial and irregular data communication.
We design a novel accelerator for training GCNs on CPU-FPGA heterogeneous systems.
arXiv Detail & Related papers (2019-12-31T21:19:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.