Multi-Agent Hybrid SAC for Joint SS-DSA in CRNs
- URL: http://arxiv.org/abs/2404.14319v1
- Date: Mon, 22 Apr 2024 16:30:03 GMT
- Title: Multi-Agent Hybrid SAC for Joint SS-DSA in CRNs
- Authors: David R. Nickel, Anindya Bijoy Das, David J. Love, Christopher G. Brinton,
- Abstract summary: Opportunistic spectrum access has the potential to increase the efficiency of spectrum utilization in cognitive radio networks (CRNs)
In CRNs, both spectrum sensing and resource allocation (SSRA) are critical to maximizing system throughput.
We develop a novel multi-agent implementation of hybrid soft actor critic, MHSAC.
- Score: 17.162697767466085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Opportunistic spectrum access has the potential to increase the efficiency of spectrum utilization in cognitive radio networks (CRNs). In CRNs, both spectrum sensing and resource allocation (SSRA) are critical to maximizing system throughput while minimizing collisions of secondary users with the primary network. However, many works in dynamic spectrum access do not consider the impact of imperfect sensing information such as mis-detected channels, which the additional information available in joint SSRA can help remediate. In this work, we examine joint SSRA as an optimization which seeks to maximize a CRN's net communication rate subject to constraints on channel sensing, channel access, and transmit power. Given the non-trivial nature of the problem, we leverage multi-agent reinforcement learning to enable a network of secondary users to dynamically access unoccupied spectrum via only local test statistics, formulated under the energy detection paradigm of spectrum sensing. In doing so, we develop a novel multi-agent implementation of hybrid soft actor critic, MHSAC, based on the QMIX mixing scheme. Through experiments, we find that our SSRA algorithm, HySSRA, is successful in maximizing the CRN's utilization of spectrum resources while also limiting its interference with the primary network, and outperforms the current state-of-the-art by a wide margin. We also explore the impact of wireless variations such as coherence time on the efficacy of the system.
Related papers
- SINR-Aware Deep Reinforcement Learning for Distributed Dynamic Channel
Allocation in Cognitive Interference Networks [10.514231683620517]
This paper focuses on real-world systems experiencing inter-carrier interference (ICI) and channel reuse by multiple large-scale networks.
We propose a novel multi-agent reinforcement learning framework for distributed DCA, named Channel Allocation RL To Overlapped Networks (CARLTON)
Our results demonstrate exceptional performance and robust generalization, showcasing superior efficiency compared to alternative state-of-the-art methods.
arXiv Detail & Related papers (2024-02-17T20:03:02Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Cooperative Multi-Agent Reinforcement Learning Based Distributed Dynamic
Spectrum Access in Cognitive Radio Networks [46.723006378363785]
Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization.
In this paper, we investigate the distributed DSA problem for multi-user in a typical cognitive radio network.
We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user.
arXiv Detail & Related papers (2021-06-17T06:52:21Z) - Machine Learning Framework for Sensing and Modeling Interference in IoT
Frequency Bands [2.6839965970551276]
There is growing need for better understanding of the spectrum occupancy with newly emerging access technologies supporting the Internet of Things.
We present a framework to capture and model the traffic behavior of short-time spectrum occupancy for IoT applications in the shared bands to determine the existing interference.
arXiv Detail & Related papers (2021-06-10T19:10:40Z) - Cross-Attention in Coupled Unmixing Nets for Unsupervised Hyperspectral
Super-Resolution [79.97180849505294]
We propose a novel coupled unmixing network with a cross-attention mechanism, CUCaNet, to enhance the spatial resolution of HSI.
Experiments are conducted on three widely-used HS-MS datasets in comparison with state-of-the-art HSI-SR models.
arXiv Detail & Related papers (2020-07-10T08:08:20Z) - Deep Reinforcement Learning Control for Radar Detection and Tracking in
Congested Spectral Environments [8.103366584285645]
A radar learns to vary the bandwidth and center frequency of its linear frequency modulated (LFM) waveforms to mitigate mutual interference with other systems.
We extend the DQL-based approach to incorporate Double Q-learning and a recurrent neural network to form a Double Deep Recurrent Q-Network.
Our experimental results indicate that the proposed Deep RL approach significantly improves radar detection performance in congested spectral environments.
arXiv Detail & Related papers (2020-06-23T17:21:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.