論文の概要: Machine Learning Techniques for MRI Data Processing at Expanding Scale
- arxiv url: http://arxiv.org/abs/2404.14326v1
- Date: Mon, 22 Apr 2024 16:38:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 13:17:55.188954
- Title: Machine Learning Techniques for MRI Data Processing at Expanding Scale
- Title(参考訳): 拡大スケールにおけるMRIデータ処理のための機械学習技術
- Authors: Taro Langner,
- Abstract要約: 世界中のイメージングサイトは、より多用途で手頃な価格のテクノロジーで、より多くの医療スキャンデータを生成する。
これらの大規模なデータセットは人間の健康に関する情報をエンコードし、機械学習のトレーニングと分析にかなりの可能性を秘めている。
本章は、現在進行中の大規模研究と、それら間の分散シフトの課題について考察する。
- 参考スコア(独自算出の注目度): 0.5221459608786241
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Imaging sites around the world generate growing amounts of medical scan data with ever more versatile and affordable technology. Large-scale studies acquire MRI for tens of thousands of participants, together with metadata ranging from lifestyle questionnaires to biochemical assays, genetic analyses and more. These large datasets encode substantial information about human health and hold considerable potential for machine learning training and analysis. This chapter examines ongoing large-scale studies and the challenge of distribution shifts between them. Transfer learning for overcoming such shifts is discussed, together with federated learning for safe access to distributed training data securely held at multiple institutions. Finally, representation learning is reviewed as a methodology for encoding embeddings that express abstract relationships in multi-modal input formats.
- Abstract(参考訳): 世界中のイメージングサイトは、より多用途で手頃な価格のテクノロジーで、より多くの医療スキャンデータを生成する。
大規模な研究は、ライフスタイルのアンケートから生化学的測定、遺伝子解析まで、何万人もの参加者のMRIを取得する。
これらの大規模なデータセットは人間の健康に関する情報をエンコードし、機械学習のトレーニングと分析にかなりの可能性を秘めている。
本章は、現在進行中の大規模研究と、それら間の分散シフトの課題について考察する。
このようなシフトを克服するためのトランスファーラーニングと、複数の機関で安全に保持された分散トレーニングデータへの安全なアクセスのためのフェデレーションラーニングについて論じる。
最後に,マルチモーダル入力形式における抽象的関係を表現する埋め込みを符号化する手法として表現学習について検討する。
関連論文リスト
- A Systematic Review of Intermediate Fusion in Multimodal Deep Learning for Biomedical Applications [0.7831774233149619]
本研究は,生物医学的応用における現在の中間核融合法の解析と形式化を目的としている。
バイオメディカルドメインを超えて,これらの手法の理解と応用を高めるための構造的表記法を導入する。
我々の発見は、より高度で洞察に富んだマルチモーダルモデルの開発において、研究者、医療専門家、そしてより広範なディープラーニングコミュニティを支援することを目的としています。
論文 参考訳(メタデータ) (2024-08-02T11:48:04Z) - HyperFusion: A Hypernetwork Approach to Multimodal Integration of Tabular and Medical Imaging Data for Predictive Modeling [4.44283662576491]
EHRの値と測定値に画像処理を条件付け,臨床画像と表層データを融合させるハイパーネットワークに基づく新しいフレームワークを提案する。
我々は, 単一モダリティモデルと最先端MRI-タブラルデータ融合法の両方に優れることを示す。
論文 参考訳(メタデータ) (2024-03-20T05:50:04Z) - HEALNet: Multimodal Fusion for Heterogeneous Biomedical Data [10.774128925670183]
本稿では,フレキシブルなマルチモーダル融合アーキテクチャであるHybrid Early-fusion Attention Learning Network (HEALNet)を提案する。
The Cancer Genome Atlas (TCGA) の4つのがんデータセットにおける全スライド画像と多モードデータを用いたマルチモーダルサバイバル解析を行った。
HEALNetは、他のエンドツーエンドの訓練された融合モデルと比較して最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-15T17:06:26Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
本研究は、オンコロジーデータシステム(MINDS)のマルチモーダル統合を提案する。
MINDSはフレキシブルでスケーラブルで費用対効果の高いメタデータフレームワークで、公開ソースから異なるデータを効率的に分離する。
MINDSは、マルチモーダルデータを調和させることで、より分析能力の高い研究者を力づけることを目指している。
論文 参考訳(メタデータ) (2023-09-30T15:44:39Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
本稿では,変換器と生成対向ネットワークを用いた不完全なマルチモーダルデータ統合手法を提案する。
アルツハイマー病神経画像イニシアチブコホートを用いたマルチモーダルイメージングによる認知変性と疾患予後の予測に本手法を適用した。
論文 参考訳(メタデータ) (2023-05-25T16:29:16Z) - Multimodal Data Integration for Oncology in the Era of Deep Neural Networks: A Review [0.0]
多様なデータ型を統合することで、がんの診断と治療の精度と信頼性が向上する。
ディープニューラルネットワークは、洗練されたマルチモーダルデータ融合アプローチの開発を促進する。
グラフニューラルネットワーク(GNN)やトランスフォーマーといった最近のディープラーニングフレームワークは、マルチモーダル学習において顕著な成功を収めている。
論文 参考訳(メタデータ) (2023-03-11T17:52:03Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
新型コロナウイルスのパンデミックが急速に広がり、世界の医療資源が不足している。
CNNは医療画像の解析に広く利用され、検証されている。
論文 参考訳(メタデータ) (2022-03-24T02:09:41Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
我々は、診断とBCI(Brain-Computer-Interface)に関する2つの伝達学習課題を設計する。
第1タスクは、患者全体にわたる自動睡眠ステージアノテーションに対処する医療診断に重点を置いている。
タスク2はBrain-Computer Interface (BCI)に集中しており、被験者とデータセットの両方にわたる運動画像のデコードに対処する。
論文 参考訳(メタデータ) (2022-02-14T12:12:20Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
病院では、同じ情報を異なるモダリティの下で利用できるようにする特定の情報システムにデータがサイロ化される。
これは、テスト時に常に利用できないかもしれない同じ情報の複数のビューを列車で取得し、使用するためのユニークな機会を提供する。
テスト時にモダリティの低下に耐性を持つマルチモーダル入力の優れた表現を学習することで、利用可能なデータを最大限活用する革新的なフレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T20:05:35Z) - MS-Net: Multi-Site Network for Improving Prostate Segmentation with
Heterogeneous MRI Data [75.73881040581767]
本稿では,ロバスト表現を学習し,前立腺のセグメンテーションを改善するための新しいマルチサイトネットワーク(MS-Net)を提案する。
当社のMS-Netは,すべてのデータセットのパフォーマンスを一貫して改善し,マルチサイト学習における最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2020-02-09T14:11:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。