Beyond Scaling: Predicting Patent Approval with Domain-specific Fine-grained Claim Dependency Graph
- URL: http://arxiv.org/abs/2404.14372v1
- Date: Mon, 22 Apr 2024 17:22:31 GMT
- Title: Beyond Scaling: Predicting Patent Approval with Domain-specific Fine-grained Claim Dependency Graph
- Authors: Xiaochen Kev Gao, Feng Yao, Kewen Zhao, Beilei He, Animesh Kumar, Vish Krishnan, Jingbo Shang,
- Abstract summary: In this paper, we unveil that simple domain-specific graph methods outperform the model, using the intrinsic dependencies within the patent data.
We propose a novel Fine-grained cLAim depeNdency (FLAN) Graph through meticulous patent data analyses.
- Score: 28.13334909565348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Model scaling is becoming the default choice for many language tasks due to the success of large language models (LLMs). However, it can fall short in specific scenarios where simple customized methods excel. In this paper, we delve into the patent approval pre-diction task and unveil that simple domain-specific graph methods outperform enlarging the model, using the intrinsic dependencies within the patent data. Specifically, we first extend the embedding-based state-of-the-art (SOTA) by scaling up its backbone model with various sizes of open-source LLMs, then explore prompt-based methods to harness proprietary LLMs' potential, but find the best results close to random guessing, underlining the ineffectiveness of model scaling-up. Hence, we propose a novel Fine-grained cLAim depeNdency (FLAN) Graph through meticulous patent data analyses, capturing the inherent dependencies across segments of the patent text. As it is model-agnostic, we apply cost-effective graph models to our FLAN Graph to obtain representations for approval prediction. Extensive experiments and detailed analyses prove that incorporating FLAN Graph via various graph models consistently outperforms all LLM baselines significantly. We hope that our observations and analyses in this paper can bring more attention to this challenging task and prompt further research into the limitations of LLMs. Our source code and dataset can be obtained from http://github.com/ShangDataLab/FLAN-Graph.
Related papers
- Exploring Graph Tasks with Pure LLMs: A Comprehensive Benchmark and Investigation [26.19182768810174]
Graph-structured data has become increasingly prevalent across various domains, raising the demand for effective models to handle graph tasks.
Traditional graph learning models like Graph Neural Networks (GNNs) have made significant strides, but their capabilities in handling graph data remain limited in certain contexts.
In recent years, large language models (LLMs) have emerged as promising candidates for graph tasks, yet most studies focus primarily on performance benchmarks.
arXiv Detail & Related papers (2025-02-26T03:03:46Z) - GraphCLIP: Enhancing Transferability in Graph Foundation Models for Text-Attributed Graphs [27.169892145194638]
GraphCLIP is a framework to learn graph foundation models with strong cross-domain zero/few-shot transferability.
We generate and curate large-scale graph-summary pair data with the assistance of LLMs.
For few-shot learning, we propose a novel graph prompt tuning technique aligned with our pretraining objective.
arXiv Detail & Related papers (2024-10-14T09:40:52Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
We introduce ProGraph, a benchmark for large language models (LLMs) to process graphs.
Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy.
We propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries.
arXiv Detail & Related papers (2024-09-29T11:38:45Z) - GLBench: A Comprehensive Benchmark for Graph with Large Language Models [41.89444363336435]
We introduce GLBench, the first comprehensive benchmark for evaluating GraphLLM methods in both supervised and zero-shot scenarios.
GLBench provides a fair and thorough evaluation of different categories of GraphLLM methods, along with traditional baselines such as graph neural networks.
arXiv Detail & Related papers (2024-07-10T08:20:47Z) - Exploring the Potential of Large Language Models in Graph Generation [51.046188600990014]
Graph generation requires large language models (LLMs) to generate graphs with given properties.
This paper explores the abilities of LLMs for graph generation with systematical task designs and experiments.
Our evaluations demonstrate that LLMs, particularly GPT-4, exhibit preliminary abilities in graph generation tasks.
arXiv Detail & Related papers (2024-03-21T12:37:54Z) - Efficient Causal Graph Discovery Using Large Language Models [42.724534747353665]
The proposed framework uses a breadth-first search (BFS) approach which allows it to use only a linear number of queries.
In addition to being more time and data-efficient, the proposed framework achieves state-of-the-art results on real-world causal graphs of varying sizes.
arXiv Detail & Related papers (2024-02-02T08:25:32Z) - Large Language Models on Graphs: A Comprehensive Survey [77.16803297418201]
We provide a systematic review of scenarios and techniques related to large language models on graphs.
We first summarize potential scenarios of adopting LLMs on graphs into three categories, namely pure graphs, text-attributed graphs, and text-paired graphs.
We discuss the real-world applications of such methods and summarize open-source codes and benchmark datasets.
arXiv Detail & Related papers (2023-12-05T14:14:27Z) - Beyond Text: A Deep Dive into Large Language Models' Ability on
Understanding Graph Data [13.524529952170672]
Large language models (LLMs) have achieved impressive performance on many natural language processing tasks.
We aim to assess whether LLMs can effectively process graph data and leverage topological structures to enhance performance.
By comparing LLMs' performance with specialized graph models, we offer insights into the strengths and limitations of employing LLMs for graph analytics.
arXiv Detail & Related papers (2023-10-07T23:25:22Z) - Challenging the Myth of Graph Collaborative Filtering: a Reasoned and Reproducibility-driven Analysis [50.972595036856035]
We present a code that successfully replicates results from six popular and recent graph recommendation models.
We compare these graph models with traditional collaborative filtering models that historically performed well in offline evaluations.
By investigating the information flow from users' neighborhoods, we aim to identify which models are influenced by intrinsic features in the dataset structure.
arXiv Detail & Related papers (2023-08-01T09:31:44Z) - Exploring the Potential of Large Language Models (LLMs) in Learning on
Graphs [59.74814230246034]
Large Language Models (LLMs) have been proven to possess extensive common knowledge and powerful semantic comprehension abilities.
We investigate two possible pipelines: LLMs-as-Enhancers and LLMs-as-Predictors.
arXiv Detail & Related papers (2023-07-07T05:31:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.