論文の概要: A mean curvature flow arising in adversarial training
- arxiv url: http://arxiv.org/abs/2404.14402v1
- Date: Mon, 22 Apr 2024 17:58:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 12:58:23.865592
- Title: A mean curvature flow arising in adversarial training
- Title(参考訳): 対向訓練における平均曲率流
- Authors: Leon Bungert, Tim Laux, Kerrek Stinson,
- Abstract要約: 我々は、二項分類のための対角訓練を、決定境界に対する幾何学的進化方程式に結びつける。
このスキームは単調かつ一貫したものであり、敵の予算が消滅し、周辺がローカライズされると証明する。
このことは、対人訓練の有効性は、決定境界の長さを局所的に最小化することによる可能性があることを強調している。
- 参考スコア(独自算出の注目度): 1.2289361708127877
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We connect adversarial training for binary classification to a geometric evolution equation for the decision boundary. Relying on a perspective that recasts adversarial training as a regularization problem, we introduce a modified training scheme that constitutes a minimizing movements scheme for a nonlocal perimeter functional. We prove that the scheme is monotone and consistent as the adversarial budget vanishes and the perimeter localizes, and as a consequence we rigorously show that the scheme approximates a weighted mean curvature flow. This highlights that the efficacy of adversarial training may be due to locally minimizing the length of the decision boundary. In our analysis, we introduce a variety of tools for working with the subdifferential of a supremal-type nonlocal total variation and its regularity properties.
- Abstract(参考訳): 我々は、二項分類のための対角訓練を、決定境界に対する幾何学的進化方程式に結びつける。
正規化問題としての逆行訓練をリキャストする観点から、非局所周辺関数の最小化運動スキームを構成する改良型トレーニングスキームを導入する。
このスキームが単調で一貫したものであることを証明し、敵の予算が消滅し、周辺が局所化することを証明し、その結果、このスキームが重み付き平均曲率フローに近似することを厳密に示す。
このことは、対人訓練の有効性は、決定境界の長さを局所的に最小化することによる可能性があることを強調している。
本分析では,超局所的非局所的全変量とその正則性について,そのサブディファレンシャルを扱うための様々なツールを紹介した。
関連論文リスト
- TransFusion: Covariate-Shift Robust Transfer Learning for High-Dimensional Regression [11.040033344386366]
対象タスクの学習性能を限定的なサンプルで向上させるため, 新規な融合正規化器を用いた2段階の手法を提案する。
対象モデルの推定誤差に対して、漸近的境界が提供される。
提案手法を分散設定に拡張し,事前学習ファインタニング戦略を実現する。
論文 参考訳(メタデータ) (2024-04-01T14:58:16Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - It begins with a boundary: A geometric view on probabilistically robust learning [6.877576704011329]
我々はそのような方法の1つの新鮮で幾何学的な見方を取る --確率論的ロバスト学習(PRL)
我々は, 新規緩和法を用いて, オリジナルおよび修正問題の解が存在することを証明した。
また,適切な$Gamma$-convergence解析により,原型および修正型PRLモデルがリスク最小化と対向トレーニングの間を介在する方法を明らかにした。
論文 参考訳(メタデータ) (2023-05-30T06:24:30Z) - The Geometry of Adversarial Training in Binary Classification [1.2891210250935143]
我々は,非パラメトリック二分分類における対角的学習問題の族と正規化リスク最小化問題の族との同値性を確立する。
結果として生じる正規化リスク最小化問題は、$L1+$(非局所)$operatornameTV$の正確な凸緩和を許容する。
論文 参考訳(メタデータ) (2021-11-26T17:19:50Z) - Training Generative Adversarial Networks by Solving Ordinary
Differential Equations [54.23691425062034]
GANトレーニングによって引き起こされる連続時間ダイナミクスについて検討する。
この観点から、GANのトレーニングにおける不安定性は積分誤差から生じると仮定する。
本研究では,有名なODEソルバ(Runge-Kutta など)がトレーニングを安定化できるかどうかを実験的に検証する。
論文 参考訳(メタデータ) (2020-10-28T15:23:49Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
多くの機械学習シナリオにおけるデフォルトの前提は、トレーニングとテストサンプルは同じ確率分布から引き出されることである。
予測モデルと関連する重みを1つの最適化で共同で学習する新しいワンステップアプローチを提案する。
論文 参考訳(メタデータ) (2020-07-08T11:35:47Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
そこで本研究では,対数様比統計量と正規化フローに基づく新しい分布アライメント手法を提案する。
入力領域の局所構造を保存する領域アライメントにおいて,結果の最小化を実験的に検証する。
論文 参考訳(メタデータ) (2020-03-26T22:10:04Z) - Optimal Change-Point Detection with Training Sequences in the Large and
Moderate Deviations Regimes [72.68201611113673]
本稿では,情報理論の観点から,新しいオフライン変化点検出問題について検討する。
基礎となる事前および変更後分布の知識は分かっておらず、利用可能なトレーニングシーケンスからのみ学習できると仮定する。
論文 参考訳(メタデータ) (2020-03-13T23:39:40Z) - Composing Normalizing Flows for Inverse Problems [89.06155049265641]
本稿では,2つの流れモデルの合成として,対象条件を推定する近似推論フレームワークを提案する。
本手法は,様々な逆問題に対して評価し,不確実性のある高品質な試料を作製することを示した。
論文 参考訳(メタデータ) (2020-02-26T19:01:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。