論文の概要: GeoDiffuser: Geometry-Based Image Editing with Diffusion Models
- arxiv url: http://arxiv.org/abs/2404.14403v1
- Date: Mon, 22 Apr 2024 17:58:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 12:58:23.863028
- Title: GeoDiffuser: Geometry-Based Image Editing with Diffusion Models
- Title(参考訳): GeoDiffuser:拡散モデルを用いた幾何学的画像編集
- Authors: Rahul Sajnani, Jeroen Vanbaar, Jie Min, Kapil Katyal, Srinath Sridhar,
- Abstract要約: ゼロショット最適化に基づく2次元および3次元画像に基づくオブジェクト編集機能を1つの手法に統合するGeoDiffuserを提案する。
これらの変換は拡散モデルの注意層に直接組み込むことができ、暗黙的に編集操作を行うことができる。
GeoDiffuserは、オブジェクト翻訳、3Dローテーション、削除などの一般的な2Dおよび3D編集を実行することができる。
- 参考スコア(独自算出の注目度): 7.7669649283012
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The success of image generative models has enabled us to build methods that can edit images based on text or other user input. However, these methods are bespoke, imprecise, require additional information, or are limited to only 2D image edits. We present GeoDiffuser, a zero-shot optimization-based method that unifies common 2D and 3D image-based object editing capabilities into a single method. Our key insight is to view image editing operations as geometric transformations. We show that these transformations can be directly incorporated into the attention layers in diffusion models to implicitly perform editing operations. Our training-free optimization method uses an objective function that seeks to preserve object style but generate plausible images, for instance with accurate lighting and shadows. It also inpaints disoccluded parts of the image where the object was originally located. Given a natural image and user input, we segment the foreground object using SAM and estimate a corresponding transform which is used by our optimization approach for editing. GeoDiffuser can perform common 2D and 3D edits like object translation, 3D rotation, and removal. We present quantitative results, including a perceptual study, that shows how our approach is better than existing methods. Visit https://ivl.cs.brown.edu/research/geodiffuser.html for more information.
- Abstract(参考訳): 画像生成モデルの成功により、テキストや他のユーザ入力に基づいて画像を編集する手法の構築が可能になった。
しかし、これらの手法は難解で不正確であり、追加情報を必要とするか、2D画像編集に限られる。
一般的な2Dおよび3D画像に基づくオブジェクト編集機能を1つの方法に統合するゼロショット最適化方式であるGeoDiffuserを提案する。
私たちの重要な洞察は、画像編集操作を幾何学的変換として見ることです。
これらの変換は拡散モデルの注意層に直接組み込むことができ、暗黙的に編集操作を行うことができる。
トレーニング不要な最適化手法では,オブジェクトスタイルの保存や,正確な照明や影などの可視画像の生成を目的とした客観的関数を用いる。
また、被写体が元々位置していた画像の一部も塗装する。
自然画像とユーザ入力が与えられた場合、SAMを用いて前景オブジェクトを分割し、編集に最適化手法を用いて対応する変換を推定する。
GeoDiffuserは、オブジェクト翻訳、3Dローテーション、削除などの一般的な2Dおよび3D編集を実行することができる。
我々は,既存の手法よりもアプローチがいかに優れているかを示す,知覚研究を含む定量的な結果を示す。
詳細はhttps://ivl.cs.brown.edu/research/geodiffuser.htmlを参照。
関連論文リスト
- 3D Gaussian Editing with A Single Image [19.662680524312027]
本稿では,3次元ガウシアンスプラッティングをベースとしたワンイメージ駆動の3Dシーン編集手法を提案する。
提案手法は,ユーザが指定した視点から描画した画像の編集版に合わせるために,3次元ガウスを最適化することを学ぶ。
実験により, 幾何学的詳細処理, 長距離変形, 非剛性変形処理における本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-08-14T13:17:42Z) - ICE-G: Image Conditional Editing of 3D Gaussian Splats [45.112689255145625]
単一の参照ビューから3Dモデルを素早く編集するための新しいアプローチを提案する。
我々の技術はまず編集画像を分割し、選択したセグメント化されたデータセットビュー間で意味的に対応する領域をマッチングする。
編集画像の特定の領域からの色やテクスチャの変化を、意味的に理解できる方法で、他のビューに自動的に適用することができる。
論文 参考訳(メタデータ) (2024-06-12T17:59:52Z) - DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
DiffUHaulと呼ばれるオブジェクトドラッグタスクのためのトレーニング不要な手法を提案する。
まず、各認知段階に注意マスキングを適用して、各生成を異なるオブジェクトにまたがってよりゆがみやすくする。
初期のデノナイジングステップでは、ソース画像とターゲット画像の注意特徴を補間して、新しいレイアウトを元の外観とスムーズに融合させる。
論文 参考訳(メタデータ) (2024-06-03T17:59:53Z) - DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing [72.54566271694654]
オープンな言語命令に基づいて3Dオブジェクトやシーンを編集する際の問題点を考察する。
この問題に対する一般的なアプローチは、3D編集プロセスをガイドするために2Dイメージジェネレータまたはエディタを使用することである。
このプロセスは、コストのかかる3D表現の反復的な更新を必要とするため、しばしば非効率である。
論文 参考訳(メタデータ) (2024-04-29T17:59:30Z) - Diffusion Models are Geometry Critics: Single Image 3D Editing Using Pre-Trained Diffusion Priors [24.478875248825563]
単一画像の3次元操作を可能にする新しい画像編集手法を提案する。
本手法は,テキスト・イメージ・ペアの広い範囲で訓練された強力な画像拡散モデルを直接活用する。
提案手法では,高画質な3D画像編集が可能で,視点変換が大きく,外観や形状の整合性も高い。
論文 参考訳(メタデータ) (2024-03-18T06:18:59Z) - GaussCtrl: Multi-View Consistent Text-Driven 3D Gaussian Splatting Editing [38.948892064761914]
GaussCtrlは、3D Gaussian Splatting(3DGS)によって再構成された3Dシーンを編集するテキスト駆動方式である。
私たちの重要な貢献は、複数ビューの一貫性のある編集であり、1つの画像を反復的に編集する代わりに、すべての画像を一緒に編集できる。
論文 参考訳(メタデータ) (2024-03-13T17:35:28Z) - Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape
Laplacian [58.704089101826774]
形状分類と変形型に最小限の制約を課した3次元画像変形法を提案する。
点雲として表される3次元再構成の基底体積のラプラシアン形状を予測するために,教師付き学習に基づくアプローチを採用する。
実験では,2次元キャラクタと人間の衣料画像の変形実験を行った。
論文 参考訳(メタデータ) (2022-03-29T04:57:18Z) - Learning Canonical 3D Object Representation for Fine-Grained Recognition [77.33501114409036]
本研究では,1枚の画像から3次元空間における物体の変動を再現する微粒な物体認識のための新しいフレームワークを提案する。
我々は,物体を3次元形状とその外観の合成として表現し,カメラ視点の影響を排除した。
深部表現に3次元形状と外観を併用することにより,物体の識別表現を学習する。
論文 参考訳(メタデータ) (2021-08-10T12:19:34Z) - ShaRF: Shape-conditioned Radiance Fields from a Single View [54.39347002226309]
本稿では,単一の画像のみのオブジェクトの神経シーン表現を推定する手法を提案する。
この手法の核心は,対象物の幾何学的足場の推定である。
合成画像と実画像の両方において,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2021-02-17T16:40:28Z) - AutoSweep: Recovering 3D Editable Objectsfrom a Single Photograph [54.701098964773756]
セマンティックな部分で3Dオブジェクトを復元し、直接編集することを目的としている。
我々の研究は、一般化された立方体と一般化されたシリンダーという、2種類の原始的な形状の物体を回収する試みである。
提案アルゴリズムは,高品質な3Dモデルを復元し,既存手法のインスタンスセグメンテーションと3D再構成の両方で性能を向上する。
論文 参考訳(メタデータ) (2020-05-27T12:16:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。