Monitoring Critical Infrastructure Facilities During Disasters Using Large Language Models
- URL: http://arxiv.org/abs/2404.14432v1
- Date: Thu, 18 Apr 2024 19:41:05 GMT
- Title: Monitoring Critical Infrastructure Facilities During Disasters Using Large Language Models
- Authors: Abdul Wahab Ziaullah, Ferda Ofli, Muhammad Imran,
- Abstract summary: Critical Infrastructure Facilities (CIFs) are vital for the functioning of a community, especially during large-scale emergencies.
In this paper, we explore a potential application of Large Language Models (LLMs) to monitor the status of CIFs affected by natural disasters through information disseminated in social media networks.
We analyze social media data from two disaster events in two different countries to identify reported impacts to CIFs as well as their impact severity and operational status.
- Score: 8.17728833322492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Critical Infrastructure Facilities (CIFs), such as healthcare and transportation facilities, are vital for the functioning of a community, especially during large-scale emergencies. In this paper, we explore a potential application of Large Language Models (LLMs) to monitor the status of CIFs affected by natural disasters through information disseminated in social media networks. To this end, we analyze social media data from two disaster events in two different countries to identify reported impacts to CIFs as well as their impact severity and operational status. We employ state-of-the-art open-source LLMs to perform computational tasks including retrieval, classification, and inference, all in a zero-shot setting. Through extensive experimentation, we report the results of these tasks using standard evaluation metrics and reveal insights into the strengths and weaknesses of LLMs. We note that although LLMs perform well in classification tasks, they encounter challenges with inference tasks, especially when the context/prompt is complex and lengthy. Additionally, we outline various potential directions for future exploration that can be beneficial during the initial adoption phase of LLMs for disaster response tasks.
Related papers
- Exploring Knowledge Boundaries in Large Language Models for Retrieval Judgment [56.87031484108484]
Large Language Models (LLMs) are increasingly recognized for their practical applications.
Retrieval-Augmented Generation (RAG) tackles this challenge and has shown a significant impact on LLMs.
By minimizing retrieval requests that yield neutral or harmful results, we can effectively reduce both time and computational costs.
arXiv Detail & Related papers (2024-11-09T15:12:28Z) - Language Agents Meet Causality -- Bridging LLMs and Causal World Models [50.79984529172807]
We propose a framework that integrates causal representation learning with large language models.
This framework learns a causal world model, with causal variables linked to natural language expressions.
We evaluate the framework on causal inference and planning tasks across temporal scales and environmental complexities.
arXiv Detail & Related papers (2024-10-25T18:36:37Z) - DisasterQA: A Benchmark for Assessing the performance of LLMs in Disaster Response [0.0]
We evaluate the capabilities of Large Language Models (LLMs) in disaster response knowledge.
The benchmark covers a wide range of disaster response topics.
The results indicate that LLMs require improvement on disaster response knowledge.
arXiv Detail & Related papers (2024-10-09T00:13:06Z) - DetoxBench: Benchmarking Large Language Models for Multitask Fraud & Abuse Detection [15.933013428603152]
Large language models (LLMs) have demonstrated remarkable capabilities in natural language processing tasks.
We present a benchmark suite designed to assess the performance of LLMs in identifying and mitigating fraudulent and abusive language.
arXiv Detail & Related papers (2024-09-09T21:12:03Z) - Detecting and Understanding Vulnerabilities in Language Models via Mechanistic Interpretability [44.99833362998488]
Large Language Models (LLMs) have shown impressive performance across a wide range of tasks.
LLMs in particular are known to be vulnerable to adversarial attacks, where an imperceptible change to the input can mislead the output of the model.
We propose a method, based on Mechanistic Interpretability (MI) techniques, to guide this process.
arXiv Detail & Related papers (2024-07-29T09:55:34Z) - Learning Traffic Crashes as Language: Datasets, Benchmarks, and What-if Causal Analyses [76.59021017301127]
We propose a large-scale traffic crash language dataset, named CrashEvent, summarizing 19,340 real-world crash reports.
We further formulate the crash event feature learning as a novel text reasoning problem and further fine-tune various large language models (LLMs) to predict detailed accident outcomes.
Our experiments results show that our LLM-based approach not only predicts the severity of accidents but also classifies different types of accidents and predicts injury outcomes.
arXiv Detail & Related papers (2024-06-16T03:10:16Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
Large Language Models (LLMs) have presented impressive performance across several transformative tasks.
However, it is non-trivial to efficiently utilize large-scale cluster resources to develop LLMs.
We present an in-depth characterization study of a six-month LLM development workload trace collected from our GPU datacenter Acme.
arXiv Detail & Related papers (2024-03-12T13:31:14Z) - On Catastrophic Inheritance of Large Foundation Models [51.41727422011327]
Large foundation models (LFMs) are claiming incredible performances. Yet great concerns have been raised about their mythic and uninterpreted potentials.
We propose to identify a neglected issue deeply rooted in LFMs: Catastrophic Inheritance.
We discuss the challenges behind this issue and propose UIM, a framework to understand the catastrophic inheritance of LFMs from both pre-training and downstream adaptation.
arXiv Detail & Related papers (2024-02-02T21:21:55Z) - Security and Privacy Challenges of Large Language Models: A Survey [2.6986500640871482]
Large Language Models (LLMs) have demonstrated extraordinary capabilities and contributed to multiple fields, such as generating and summarizing text, language translation, and question-answering.
These models are also vulnerable to security and privacy attacks, such as jailbreaking attacks, data poisoning attacks, and Personally Identifiable Information (PII) leakage attacks.
This survey provides a thorough review of the security and privacy challenges of LLMs for both training data and users, along with the application-based risks in various domains, such as transportation, education, and healthcare.
arXiv Detail & Related papers (2024-01-30T04:00:54Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.