Practical Battery Health Monitoring using Uncertainty-Aware Bayesian Neural Network
- URL: http://arxiv.org/abs/2404.14444v1
- Date: Sat, 20 Apr 2024 05:13:14 GMT
- Title: Practical Battery Health Monitoring using Uncertainty-Aware Bayesian Neural Network
- Authors: Yunyi Zhao, Zhang Wei, Qingyu Yan, Man-Fai Ng, B. Sivaneasan, Cheng Xiang,
- Abstract summary: We develop models based on the Bayesian neural network for predicting battery end-of-life.
Our models use sensor data related to battery health and apply distributions, rather than single-point, for each parameter of the models.
All predictions include quantifiable certainty, which improved by 66% from the initial to the mid-life stage of the battery.
- Score: 3.7740149124520315
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Battery health monitoring and prediction are critically important in the era of electric mobility with a huge impact on safety, sustainability, and economic aspects. Existing research often focuses on prediction accuracy but tends to neglect practical factors that may hinder the technology's deployment in real-world applications. In this paper, we address these practical considerations and develop models based on the Bayesian neural network for predicting battery end-of-life. Our models use sensor data related to battery health and apply distributions, rather than single-point, for each parameter of the models. This allows the models to capture the inherent randomness and uncertainty of battery health, which leads to not only accurate predictions but also quantifiable uncertainty. We conducted an experimental study and demonstrated the effectiveness of our proposed models, with a prediction error rate averaging 13.9%, and as low as 2.9% for certain tested batteries. Additionally, all predictions include quantifiable certainty, which improved by 66% from the initial to the mid-life stage of the battery. This research has practical values for battery technologies and contributes to accelerating the technology adoption in the industry.
Related papers
- A Scientific Machine Learning Approach for Predicting and Forecasting Battery Degradation in Electric Vehicles [1.393499936476792]
We present a novel approach to the prediction and long-term forecasting of battery degradation using Scientific Machine Learning framework.
We incorporate ground-truth data to inform our models, ensuring that both the predictions and forecasts reflect practical conditions.
Our approach contributes to the sustainability of energy systems and accelerates the global transition toward cleaner, more responsible energy solutions.
arXiv Detail & Related papers (2024-10-18T09:57:59Z) - Predicting Battery Capacity Fade Using Probabilistic Machine Learning Models With and Without Pre-Trained Priors [0.2445561610325265]
Lithium-ion batteries are a key energy storage technology driving revolutions in mobile electronics, electric vehicles and renewable energy storage.
Capacity retention is a vital performance measure that is frequently utilized to assess whether these batteries have approached their end-of-life.
Machine learning (ML) offers a powerful tool for predicting capacity degradation based on past data, and, potentially, prior physical knowledge.
arXiv Detail & Related papers (2024-10-08T23:23:11Z) - A Hybrid Probabilistic Battery Health Management Approach for Robust Inspection Drone Operations [0.0]
Inspection drones are ubiquitous assets that enhance the reliability of critical infrastructures through improved accessibility.
The battery is a key component that determines the overall reliability of the inspection drones and contributes to reliable and robust inspections.
This paper presents a novel hybrid probabilistic approach for battery end-of-discharge (EOD) voltage prediction of Li-Po batteries.
arXiv Detail & Related papers (2024-04-24T09:22:18Z) - Two-stage Early Prediction Framework of Remaining Useful Life for
Lithium-ion Batteries [6.917843782772814]
This paper proposes a novel method for RUL prediction of Lithium-ion batteries.
The proposed framework comprises two stages: determining the FPC using a neural network-based model to divide the degradation data into distinct health states and predicting the degradation pattern after the FPC.
Experimental results demonstrate that the proposed method outperforms conventional approaches in terms of RUL prediction.
arXiv Detail & Related papers (2023-08-07T15:28:39Z) - Confidence and Dispersity Speak: Characterising Prediction Matrix for
Unsupervised Accuracy Estimation [51.809741427975105]
This work aims to assess how well a model performs under distribution shifts without using labels.
We use the nuclear norm that has been shown to be effective in characterizing both properties.
We show that the nuclear norm is more accurate and robust in accuracy than existing methods.
arXiv Detail & Related papers (2023-02-02T13:30:48Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Hybrid physics-based and data-driven modeling with calibrated
uncertainty for lithium-ion battery degradation diagnosis and prognosis [6.7143928677892335]
Lithium-ion batteries (LIBs) are key to promoting electrification in the coming decades.
Inadequate understanding of LIB degradation is an important bottleneck that limits battery durability and safety.
Here, we propose hybrid physics-based and data-driven modeling for online diagnosis and prognosis of battery degradation.
arXiv Detail & Related papers (2021-10-25T11:14:12Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.