Predicting Battery Capacity Fade Using Probabilistic Machine Learning Models With and Without Pre-Trained Priors
- URL: http://arxiv.org/abs/2410.06422v1
- Date: Tue, 8 Oct 2024 23:23:11 GMT
- Title: Predicting Battery Capacity Fade Using Probabilistic Machine Learning Models With and Without Pre-Trained Priors
- Authors: Michael J. Kenney, Katerina G. Malollari, Sergei V. Kalinin, Maxim Ziatdinov,
- Abstract summary: Lithium-ion batteries are a key energy storage technology driving revolutions in mobile electronics, electric vehicles and renewable energy storage.
Capacity retention is a vital performance measure that is frequently utilized to assess whether these batteries have approached their end-of-life.
Machine learning (ML) offers a powerful tool for predicting capacity degradation based on past data, and, potentially, prior physical knowledge.
- Score: 0.2445561610325265
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lithium-ion batteries are a key energy storage technology driving revolutions in mobile electronics, electric vehicles and renewable energy storage. Capacity retention is a vital performance measure that is frequently utilized to assess whether these batteries have approached their end-of-life. Machine learning (ML) offers a powerful tool for predicting capacity degradation based on past data, and, potentially, prior physical knowledge, but the degree to which an ML prediction can be trusted is of significant practical importance in situations where consequential decisions must be made based on battery state of health. This study explores the efficacy of fully Bayesian machine learning in forecasting battery health with the quantification of uncertainty in its predictions. Specifically, we implemented three probabilistic ML approaches and evaluated the accuracy of their predictions and uncertainty estimates: a standard Gaussian process (GP), a structured Gaussian process (sGP), and a fully Bayesian neural network (BNN). In typical applications of GP and sGP, their hyperparameters are learned from a single sample while, in contrast, BNNs are typically pre-trained on an existing dataset to learn the weight distributions before being used for inference. This difference in methodology gives the BNN an advantage in learning global trends in a dataset and makes BNNs a good choice when training data is available. However, we show that pre-training can also be leveraged for GP and sGP approaches to learn the prior distributions of the hyperparameters and that in the case of the pre-trained sGP, similar accuracy and improved uncertainty estimation compared to the BNN can be achieved. This approach offers a framework for a broad range of probabilistic machine learning scenarios where past data is available and can be used to learn priors for (hyper)parameters of probabilistic ML models.
Related papers
- Towards a Probabilistic Fusion Approach for Robust Battery Prognostics [0.0]
This paper introduces a Bayesian ensemble learning approach to predict the capacity depletion of lithium-ion batteries.
The proposed method has been validated using a battery aging dataset collected by the NASA Ames Prognostics Center of Excellence.
arXiv Detail & Related papers (2024-05-24T07:26:36Z) - Active Learning with Fully Bayesian Neural Networks for Discontinuous and Nonstationary Data [0.0]
We introduce fully Bayesian Neural Networks (FBNNs) for active learning tasks in the'small data' regime.
FBNNs provide reliable predictive distributions, crucial for making informed decisions under uncertainty in the active learning setting.
Here, we assess the suitability and performance of FBNNs with the No-U-Turn Sampler for active learning tasks in the'small data' regime.
arXiv Detail & Related papers (2024-05-16T05:20:47Z) - Informed Spectral Normalized Gaussian Processes for Trajectory Prediction [0.0]
We propose a novel regularization-based continual learning method for SNGPs.
Our proposal builds upon well-established methods and requires no rehearsal memory or parameter expansion.
We apply our informed SNGP model to the trajectory prediction problem in autonomous driving by integrating prior drivability knowledge.
arXiv Detail & Related papers (2024-03-18T17:05:24Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Enhanced Gaussian Process Dynamical Models with Knowledge Transfer for
Long-term Battery Degradation Forecasting [0.9208007322096533]
Predicting the end-of-life or remaining useful life of batteries in electric vehicles is a critical and challenging problem.
A number of algorithms have incorporated features that are available from data collected by battery management systems.
We develop a highly-accurate method that can overcome this limitation.
arXiv Detail & Related papers (2022-12-03T12:59:51Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Hessian-based toolbox for reliable and interpretable machine learning in
physics [58.720142291102135]
We present a toolbox for interpretability and reliability, extrapolation of the model architecture.
It provides a notion of the influence of the input data on the prediction at a given test point, an estimation of the uncertainty of the model predictions, and an agnostic score for the model predictions.
Our work opens the road to the systematic use of interpretability and reliability methods in ML applied to physics and, more generally, science.
arXiv Detail & Related papers (2021-08-04T16:32:59Z) - Probabilistic Gradient Boosting Machines for Large-Scale Probabilistic
Regression [51.770998056563094]
Probabilistic Gradient Boosting Machines (PGBM) is a method to create probabilistic predictions with a single ensemble of decision trees.
We empirically demonstrate the advantages of PGBM compared to existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-03T08:32:13Z) - Scalable Marginal Likelihood Estimation for Model Selection in Deep
Learning [78.83598532168256]
Marginal-likelihood based model-selection is rarely used in deep learning due to estimation difficulties.
Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable.
arXiv Detail & Related papers (2021-04-11T09:50:24Z) - Energy Forecasting in Smart Grid Systems: A Review of the
State-of-the-art Techniques [2.3436632098950456]
This paper presents a review of state-of-the-art forecasting methods for smart grid (SG) systems.
Traditional point forecasting methods including statistical, machine learning (ML), and deep learning (DL) are extensively investigated.
A comparative case study using the Victorian electricity consumption and American electric power (AEP) is conducted.
arXiv Detail & Related papers (2020-11-25T09:17:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.