Multifidelity Surrogate Models: A New Data Fusion Perspective
- URL: http://arxiv.org/abs/2404.14456v1
- Date: Sun, 21 Apr 2024 11:21:47 GMT
- Title: Multifidelity Surrogate Models: A New Data Fusion Perspective
- Authors: Daniel N Wilke,
- Abstract summary: Multifidelity surrogate modelling combines data of varying accuracy and cost from different sources.
It strategically uses low-fidelity models for rapid evaluations, saving computational resources.
It improves decision-making by addressing uncertainties and surpassing the limits of single-fidelity models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multifidelity surrogate modelling combines data of varying accuracy and cost from different sources. It strategically uses low-fidelity models for rapid evaluations, saving computational resources, and high-fidelity models for detailed refinement. It improves decision-making by addressing uncertainties and surpassing the limits of single-fidelity models, which either oversimplify or are computationally intensive. Blending high-fidelity data for detailed responses with frequent low-fidelity data for quick approximations facilitates design optimisation in various domains. Despite progress in interpolation, regression, enhanced sampling, error estimation, variable fidelity, and data fusion techniques, challenges persist in selecting fidelity levels and developing efficient data fusion methods. This study proposes a new fusion approach to construct multi-fidelity surrogate models by constructing gradient-only surrogates that use only gradients to construct regression surfaces. Results are demonstrated on foundational example problems that isolate and illustrate the fusion approach's efficacy, avoiding the need for complex examples that obfuscate the main concept.
Related papers
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Practical multi-fidelity machine learning: fusion of deterministic and Bayesian models [0.34592277400656235]
Multi-fidelity machine learning methods integrate scarce, resource-intensive high-fidelity data with abundant but less accurate low-fidelity data.
We propose a practical multi-fidelity strategy for problems spanning low- and high-dimensional domains.
arXiv Detail & Related papers (2024-07-21T10:40:50Z) - Multi-fidelity Gaussian process surrogate modeling for regression problems in physics [0.0]
Multi-fidelity methods provide a solution by chaining models in a hierarchy with increasing fidelity.
We show that multi-fidelity methods generally have a smaller prediction error for the same computational cost as compared to the single-fidelity method.
arXiv Detail & Related papers (2024-04-18T07:52:12Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
We develop a novel training method for generative models, such as Generative Adversarial Networks and Normalizing Flows.
We show that achieving a specified precision-recall trade-off corresponds to minimizing a unique $f$-divergence from a family we call the textitPR-divergences.
Our approach improves the performance of existing state-of-the-art models like BigGAN in terms of either precision or recall when tested on datasets such as ImageNet.
arXiv Detail & Related papers (2023-05-30T10:07:17Z) - Disentangled Multi-Fidelity Deep Bayesian Active Learning [19.031567953748453]
Multi-fidelity active learning aims to learn a direct mapping from input parameters to simulation outputs at the highest fidelity.
Deep learning-based methods often impose a hierarchical structure in hidden representations, which only supports passing information from low-fidelity to high-fidelity.
We propose a novel framework called Disentangled Multi-fidelity Deep Bayesian Active Learning (D-MFDAL), which learns the surrogate models conditioned on the distribution of functions at multiple fidelities.
arXiv Detail & Related papers (2023-05-07T23:14:58Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - General multi-fidelity surrogate models: Framework and active learning
strategies for efficient rare event simulation [1.708673732699217]
Estimating the probability of failure for complex real-world systems is often prohibitively expensive.
This paper presents a robust multi-fidelity surrogate modeling strategy.
It is shown to be highly accurate while drastically reducing the number of high-fidelity model calls.
arXiv Detail & Related papers (2022-12-07T00:03:21Z) - Multi-fidelity surrogate modeling using long short-term memory networks [0.0]
We introduce a novel data-driven framework of multi-fidelity surrogate modeling for parametrized, time-dependent problems.
We show that the proposed multi-fidelity LSTM networks not only improve single-fidelity regression significantly, but also outperform the multi-fidelity models based on feed-forward neural networks.
arXiv Detail & Related papers (2022-08-05T12:05:02Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
We introduce a novel approach to directly optimize a reinforcement learning objective, maximizing an expected reward.
We test our methodology on two tasks: generating molecules with user-defined properties and identifying short python expressions which evaluate to a given target value.
arXiv Detail & Related papers (2020-10-05T20:03:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.