Towards Safe Multi-Task Bayesian Optimization
- URL: http://arxiv.org/abs/2312.07281v3
- Date: Mon, 17 Jun 2024 07:05:43 GMT
- Title: Towards Safe Multi-Task Bayesian Optimization
- Authors: Jannis O. Lübsen, Christian Hespe, Annika Eichler,
- Abstract summary: Reduced physical models of the system can be incorporated into the optimization process, accelerating it.
These models are able to offer an approximation of the actual system, and evaluating them is significantly cheaper.
Safety is a crucial criterion for online optimization methods such as Bayesian optimization.
- Score: 1.3654846342364308
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Bayesian optimization has emerged as a highly effective tool for the safe online optimization of systems, due to its high sample efficiency and noise robustness. To further enhance its efficiency, reduced physical models of the system can be incorporated into the optimization process, accelerating it. These models are able to offer an approximation of the actual system, and evaluating them is significantly cheaper. The similarity between the model and reality is represented by additional hyperparameters, which are learned within the optimization process. Safety is a crucial criterion for online optimization methods such as Bayesian optimization, which has been addressed by recent works that provide safety guarantees under the assumption of known hyperparameters. In practice, however, this does not apply. Therefore, we extend the robust Gaussian process uniform error bounds to meet the multi-task setting, which involves the calculation of a confidence region from the hyperparameter posterior distribution utilizing Markov chain Monte Carlo methods. Subsequently, the robust safety bounds are employed to facilitate the safe optimization of the system, while incorporating measurements of the models. Simulation results indicate that the optimization can be significantly accelerated for expensive to evaluate functions in comparison to other state-of-the-art safe Bayesian optimization methods, contingent on the fidelity of the models.
Related papers
- Safe Bayesian Optimization for High-Dimensional Control Systems via Additive Gaussian Processes [2.3342885570554652]
We propose a high-dimensional safe Bayesian optimization method based on additive Gaussian processes to optimize multiple controllers simultaneously and safely.
Experimental results on a permanent magnet synchronous motor (PMSM) demonstrate that our method can obtain optimal parameters more efficiently while ensuring safety.
arXiv Detail & Related papers (2024-08-29T07:12:37Z) - CMA-ES for Safe Optimization [9.130749109828717]
This study focuses on CMA-ES as an efficient evolutionary algorithm and proposes an optimization method termed safe CMA-ES.
The safe CMA-ES is designed to achieve both safety and efficiency in safe optimization.
arXiv Detail & Related papers (2024-05-17T04:24:56Z) - Adaptive Bayesian Optimization for High-Precision Motion Systems [2.073673208115137]
We propose a real-time purely data-driven, model-free approach for adaptive control, by online tuning low-level controller parameters.
We base our algorithm on GoOSE, an algorithm for safe and sample-efficient Bayesian optimization.
We evaluate the algorithm's performance on a real precision-motion system utilized in semiconductor industry applications.
arXiv Detail & Related papers (2024-04-22T21:58:23Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Generalizing Bayesian Optimization with Decision-theoretic Entropies [102.82152945324381]
We consider a generalization of Shannon entropy from work in statistical decision theory.
We first show that special cases of this entropy lead to popular acquisition functions used in BO procedures.
We then show how alternative choices for the loss yield a flexible family of acquisition functions.
arXiv Detail & Related papers (2022-10-04T04:43:58Z) - Safe Real-Time Optimization using Multi-Fidelity Gaussian Processes [0.0]
This paper proposes a new class of real-time optimization schemes to overcome system mismatch of uncertain processes.
The proposed scheme uses two Gaussian processes for the system, one emulates the known process model, and another, the true system through measurements.
arXiv Detail & Related papers (2021-11-10T09:31:10Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
Probabilistic models such as Gaussian processes (GPs) are powerful tools to learn unknown dynamical systems from data for subsequent use in control design.
We present a novel controller synthesis for linearized GP dynamics that yields robust controllers with respect to a probabilistic stability margin.
arXiv Detail & Related papers (2021-05-17T08:36:18Z) - Real-Time Optimization Meets Bayesian Optimization and Derivative-Free
Optimization: A Tale of Modifier Adaptation [0.0]
This paper investigates a new class of modifier-adaptation schemes to overcome plant-model mismatch in real-time optimization of uncertain processes.
The proposed schemes embed a physical model and rely on trust-region ideas to minimize risk during the exploration.
The benefits of using an acquisition function, knowing the process noise level, or specifying a nominal process model are illustrated.
arXiv Detail & Related papers (2020-09-18T12:57:17Z) - Robust, Accurate Stochastic Optimization for Variational Inference [68.83746081733464]
We show that common optimization methods lead to poor variational approximations if the problem is moderately large.
Motivated by these findings, we develop a more robust and accurate optimization framework by viewing the underlying algorithm as producing a Markov chain.
arXiv Detail & Related papers (2020-09-01T19:12:11Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.