論文の概要: Describe-then-Reason: Improving Multimodal Mathematical Reasoning through Visual Comprehension Training
- arxiv url: http://arxiv.org/abs/2404.14604v3
- Date: Fri, 26 Apr 2024 02:34:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-29 12:15:51.770564
- Title: Describe-then-Reason: Improving Multimodal Mathematical Reasoning through Visual Comprehension Training
- Title(参考訳): Describe-then-Reason: Visual Comprehension Training によるマルチモーダル数学的推論の改善
- Authors: Mengzhao Jia, Zhihan Zhang, Wenhao Yu, Fangkai Jiao, Meng Jiang,
- Abstract要約: オープンソースのマルチモーダル大言語モデル(MLLM)は、テキスト入力や視覚入力を含む様々なタスクに優れる。
MLLMは複雑なマルチモーダルな数学的推論に苦慮し、GPT-4V(ision)やGemini-Proといった独自のモデルに遅れを取っている。
本稿では,2段階のトレーニングパイプラインVCARを提案する。
- 参考スコア(独自算出の注目度): 24.989732666940153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Open-source multimodal large language models (MLLMs) excel in various tasks involving textual and visual inputs but still struggle with complex multimodal mathematical reasoning, lagging behind proprietary models like GPT-4V(ision) and Gemini-Pro. Although fine-tuning with intermediate steps (i.e., rationales) elicits some mathematical reasoning skills, the resulting models still fall short in visual comprehension due to inadequate visual-centric supervision, which leads to inaccurate interpretation of math figures. To address this issue, we propose a two-step training pipeline VCAR, which emphasizes the Visual Comprehension training in Addition to mathematical Reasoning learning. It first improves the visual comprehension ability of MLLMs through the visual description generation task, followed by another training step on generating rationales with the assistance of descriptions. Experimental results on two popular benchmarks demonstrate that VCAR substantially outperforms baseline methods solely relying on rationale supervision, especially on problems with high visual demands.
- Abstract(参考訳): オープンソースのマルチモーダル大言語モデル(MLLM)は、テキスト入力や視覚入力を含む様々なタスクに優れていますが、GPT-4V(ision)やGemini-Proといったプロプライエタリなモデルに遅れを取っている複雑なマルチモーダル数学的推論に苦戦しています。
中間段階(すなわち理性)による微調整は、いくつかの数学的推論スキルを引き出すが、結果として得られるモデルは、まだ視覚中心の監督が不十分なため、視覚的理解に乏しく、数学の数字の正確な解釈に繋がる。
この問題に対処するために,2段階のトレーニングパイプラインVCARを提案する。
まず、視覚的記述生成タスクを通じてMLLMの視覚的理解能力を向上し、次に、説明の助けを借りて合理性を生成するための別の訓練ステップを行う。
2つの人気のあるベンチマーク実験の結果、VCARは、特に高い視覚的要求のある問題において、合理的な監督にのみ依存するベースライン手法を大幅に上回っていることが示された。
関連論文リスト
- Why Vision Language Models Struggle with Visual Arithmetic? Towards Enhanced Chart and Geometry Understanding [94.64781599202882]
視覚言語モデル(VLM)はマルチモーダルタスクにおいて顕著な進歩を遂げた。
彼らはしばしば、オブジェクトのカウントや長さ比較のような一見単純な機能である視覚的算術に苦しむ。
我々は、ピアジェの認知発達理論に触発された新しいポストトレーニング戦略であるCogAlignを提案する。
論文 参考訳(メタデータ) (2025-02-17T06:54:49Z) - Open Eyes, Then Reason: Fine-grained Visual Mathematical Understanding in MLLMs [62.875934732547435]
現在の大言語モデル(MLLM)は、細かな視覚的理解を必要とする数学的問題解決のタスクでは性能が劣ることが多い。
本稿では,最先端MLLMの視覚的接地能力を評価し,視覚的接地精度と問題解決性能との間に有意な負の相関関係を示す。
本稿では,幾何学的地上視覚エンコーダと,階層型視覚特徴マップの寄与度を動的に調整する機能ルータを備えた新しいアプローチであるSVE-Mathを提案する。
論文 参考訳(メタデータ) (2025-01-11T04:08:44Z) - Generalizing from SIMPLE to HARD Visual Reasoning: Can We Mitigate Modality Imbalance in VLMs? [48.41029452721923]
視覚言語モデル(VLM)は、視覚的質問応答(VQA)や画像キャプションといったタスクにおいて印象的である。
画像に多段階推論を適用する能力は、モダリティの不均衡や脆さの知覚を引き起こす。
論文 参考訳(メタデータ) (2025-01-05T21:36:38Z) - Looking Beyond Text: Reducing Language bias in Large Vision-Language Models via Multimodal Dual-Attention and Soft-Image Guidance [67.26434607115392]
大規模視覚言語モデル(LVLM)は様々な視覚言語タスクにおいて印象的な成果を上げている。
LVLMは言語バイアスによる幻覚に悩まされ、画像や非効果的な視覚的理解に焦点が当てられなくなった。
MDA (Multimodal duAl-attention meChanIsm) aNd soft-image Guidance (IFG) を用いたLVLMの言語バイアスに対処するためのLACingを提案する。
論文 参考訳(メタデータ) (2024-11-21T16:33:30Z) - Enhancing Advanced Visual Reasoning Ability of Large Language Models [20.32900494896848]
VL(Vision-Language)研究の最近の進歩は、複雑な視覚的推論のための新しいベンチマークを引き起こした。
我々はCVR-LLM(Complex Visual Reasoning Large Language Models)を提案する。
提案手法は,反復的自己修正ループを用いて,画像の詳細なコンテキスト認識記述に変換する。
また、LLMの文脈的理解と推論を強化するために、新しいマルチモーダル・インコンテキスト学習(ICL)手法を導入する。
論文 参考訳(メタデータ) (2024-09-21T02:10:19Z) - Math-PUMA: Progressive Upward Multimodal Alignment to Enhance Mathematical Reasoning [5.9767694994869425]
MLLM(Multimodal Large Language Models)は、テキストベースの数学的問題の解法として優れている。
彼らは、主に自然の風景画像で訓練されているため、数学的図形に苦しむ。
本研究では,プログレッシブ・アップワード・マルチモーダルアライメントに着目したMath-PUMAを提案する。
論文 参考訳(メタデータ) (2024-08-16T10:11:05Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - DiMBERT: Learning Vision-Language Grounded Representations with
Disentangled Multimodal-Attention [101.99313208598569]
視覚と言語(V-L)タスクは、視覚内容と自然言語の両方を理解する必要がある。
視覚と言語に対する注意空間を分離したDiMBERT(Disentangled Multimodal-Attention BERT)を提案する。
DiMBERTは3つのタスクに対して最新のパフォーマンスを新たに設定する。
論文 参考訳(メタデータ) (2022-10-28T23:00:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。