論文の概要: VisionGraph: Leveraging Large Multimodal Models for Graph Theory Problems in Visual Context
- arxiv url: http://arxiv.org/abs/2405.04950v1
- Date: Wed, 8 May 2024 10:42:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 14:44:45.431635
- Title: VisionGraph: Leveraging Large Multimodal Models for Graph Theory Problems in Visual Context
- Title(参考訳): VisionGraph:ビジュアルコンテキストにおけるグラフ理論問題に対する大規模マルチモーダルモデルの活用
- Authors: Yunxin Li, Baotian Hu, Haoyuan Shi, Wei Wang, Longyue Wang, Min Zhang,
- Abstract要約: 我々はVisionGraphというベンチマークを設計し、マルチモーダルグラフ理論問題の解法における高度なLMMの能力について検討する。
本稿では、推論過程の論理的精度を高めるために、DPR(Description-Program-Reasoning)連鎖を提案する。
GPT-4V は多段階グラフ推論において Gemini Pro よりも優れていた。
- 参考スコア(独自算出の注目度): 41.11701706312843
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Multimodal Models (LMMs) have achieved impressive success in visual understanding and reasoning, remarkably improving the performance of mathematical reasoning in a visual context. Yet, a challenging type of visual math lies in the multimodal graph theory problem, which demands that LMMs understand the graphical structures accurately and perform multi-step reasoning on the visual graph. Additionally, exploring multimodal graph theory problems will lead to more effective strategies in fields like biology, transportation, and robotics planning. To step forward in this direction, we are the first to design a benchmark named VisionGraph, used to explore the capabilities of advanced LMMs in solving multimodal graph theory problems. It encompasses eight complex graph problem tasks, from connectivity to shortest path problems. Subsequently, we present a Description-Program-Reasoning (DPR) chain to enhance the logical accuracy of reasoning processes through graphical structure description generation and algorithm-aware multi-step reasoning. Our extensive study shows that 1) GPT-4V outperforms Gemini Pro in multi-step graph reasoning; 2) All LMMs exhibit inferior perception accuracy for graphical structures, whether in zero/few-shot settings or with supervised fine-tuning (SFT), which further affects problem-solving performance; 3) DPR significantly improves the multi-step graph reasoning capabilities of LMMs and the GPT-4V (DPR) agent achieves SOTA performance.
- Abstract(参考訳): 大規模マルチモーダルモデル(LMM)は視覚的理解と推論において顕著な成功を収め、視覚的文脈における数学的推論の性能を著しく向上させた。
しかし、視覚数学の挑戦的なタイプはマルチモーダルグラフ理論の問題にあり、LMMはグラフィカルな構造を正確に理解し、視覚グラフ上で多段階の推論を行う必要がある。
さらに、マルチモーダルグラフ理論の問題を探求することで、生物学、輸送学、ロボット計画といった分野においてより効果的な戦略がもたらされる。
この方向に進むために、我々はVisionGraphというベンチマークを最初に設計し、マルチモーダルグラフ理論問題の解法における高度なLMMの能力を探究した。
接続性から最短経路問題までの8つの複雑なグラフ問題タスクを含んでいる。
次に、図形構造記述生成とアルゴリズム対応多段階推論により、推論プロセスの論理的精度を高めるための記述-プログラム-推論(DPR)チェーンを提案する。
我々の広範な研究は、
1) GPT-4V は多段階グラフ推論において Gemini Pro より優れている。
2)全てのLMMは,ゼロ/フェーショット設定でも教師付き微調整(SFT)であっても,グラフィカルな構造に対して認識精度が劣っている。
3) DPRはLMMの多段階グラフ推論能力を大幅に改善し, GPT-4V (DPR) エージェントはSOTA性能を実現する。
関連論文リスト
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
ノード中心の局所情報と相互作用中心のグローバル構造を捉えるために2ブロックアーキテクチャを用いる階層型グラフ言語モデル(HLM-G)を導入する。
提案手法は,大規模グラフ処理における計算コストを削減しつつ,高い効率性,効率性,ロバスト性で様々なグラフクエリに対処することを可能にする。
多様なグラフ推論およびノード,リンク,グラフレベルの実世界のタスクに対する総合的な評価は,本手法の優位性を強調している。
論文 参考訳(メタデータ) (2024-10-29T00:28:02Z) - InstructG2I: Synthesizing Images from Multimodal Attributed Graphs [50.852150521561676]
InstructG2Iと呼ばれるグラフ文脈条件拡散モデルを提案する。
InstructG2Iはまずグラフ構造とマルチモーダル情報を利用して情報的隣人サンプリングを行う。
Graph-QFormerエンコーダは、グラフノードをグラフプロンプトの補助セットに適応的に符号化し、デノナイジングプロセスを導く。
論文 参考訳(メタデータ) (2024-10-09T17:56:15Z) - Scalable and Accurate Graph Reasoning with LLM-based Multi-Agents [27.4884498301785]
GraphAgent-Reasonerは、明示的で正確なグラフ推論のための微調整不要なフレームワークである。
分散グラフ計算理論にインスパイアされた我々のフレームワークは、グラフ問題を複数のエージェント間で分散される小さなノード中心のタスクに分解する。
本フレームワークは,Webページ重要度分析などの実世界のグラフ推論アプリケーションを扱う能力を示す。
論文 参考訳(メタデータ) (2024-10-07T15:34:14Z) - GraphInsight: Unlocking Insights in Large Language Models for Graph Structure Understanding [17.724492441325165]
大規模言語モデル(LLM)は、グラフ記述シーケンスのプロンプトを通じてグラフィカルな構造情報を理解するのに苦労する。
マクロおよびマイクロレベルのグラフィカル情報に対するLLMの理解を改善するための新しいフレームワークであるGraphInsightを提案する。
論文 参考訳(メタデータ) (2024-09-05T05:34:16Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
大規模言語モデル(LLM)のグラフ推論能力に着目する。
グラフ記述変換,グラフ接続,最短パス問題という3つの基本グラフタスクにおけるLLMの能力を再考する。
この結果から,LLMはテキスト記述によるグラフ構造理解に失敗し,これらの基本課題に対して様々な性能を示すことが可能であることが示唆された。
論文 参考訳(メタデータ) (2024-08-18T16:26:39Z) - Can Graph Descriptive Order Affect Solving Graph Problems with LLMs? [38.1577036285387]
大規模言語モデル(LLM)は、数学的推論や論理的推論を含む推論タスクにおいて大きな成功を収めた。
従来の研究は様々な手法を用いてLSMのグラフ推論能力について研究してきた。
重要な要素は、主に見過ごされ、グラフ記述がモデルに提示される即時順序である。
論文 参考訳(メタデータ) (2024-02-11T09:46:24Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
本稿では,画像エンコーディングとマルチモーダル技術を統合することで,グラフデータの理解と推論を行う新しいパラダイムを提案する。
このアプローチは, GPT-4Vの高度な機能を利用して, 命令応答形式によるグラフデータの理解を可能にする。
研究は、このパラダイムを様々なグラフタイプで評価し、特に中国のOCRパフォーマンスと複雑な推論タスクにおいて、モデルの強みと弱みを強調した。
論文 参考訳(メタデータ) (2023-12-16T08:14:11Z) - GraphLLM: Boosting Graph Reasoning Ability of Large Language Model [7.218768686958888]
GraphLLMは、グラフ学習モデルと大規模言語モデルを統合する、先駆的なエンドツーエンドアプローチである。
4つの基本グラフ推論タスクにおける経験的評価により,GraphLLMの有効性が検証された。
その結果、54.44%の精度が向上し、96.45%の文脈が短縮された。
論文 参考訳(メタデータ) (2023-10-09T16:42:00Z) - Talk like a Graph: Encoding Graphs for Large Language Models [15.652881653332194]
大規模言語モデル(LLM)による消費用テキストとしてグラフ構造化データを符号化する最初の包括的研究について検討する。
グラフ解析におけるLCMの性能は,(1)グラフ符号化法,(2)グラフ処理自体の性質,(3)興味深いことに,考慮されたグラフの構造の3つの基本レベルによって異なることを示す。
論文 参考訳(メタデータ) (2023-10-06T19:55:21Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
大型言語モデル (LLM) は暗黙的なグラフィカル構造を持つ様々なタスクに採用されている。
自然言語をシミュレーションするグラフベース問題解決のベンチマークであるNLGraphを提案する。
論文 参考訳(メタデータ) (2023-05-17T08:29:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。