Novel Topological Machine Learning Methodology for Stream-of-Quality Modeling in Smart Manufacturing
- URL: http://arxiv.org/abs/2404.14728v1
- Date: Tue, 23 Apr 2024 04:06:08 GMT
- Title: Novel Topological Machine Learning Methodology for Stream-of-Quality Modeling in Smart Manufacturing
- Authors: Jay Lee, Dai-Yan Ji, Yuan-Ming Hsu,
- Abstract summary: This paper presents a topological analytics approach within the 5-level Cyber-Physical Systems (CPS) architecture for the Stream-of-Quality assessment in smart manufacturing.
The proposed methodology not only enables real-time quality monitoring and predictive analytics but also discovers the hidden relationships between quality features and process parameters across different manufacturing processes.
- Score: 0.5852077003870417
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a topological analytics approach within the 5-level Cyber-Physical Systems (CPS) architecture for the Stream-of-Quality assessment in smart manufacturing. The proposed methodology not only enables real-time quality monitoring and predictive analytics but also discovers the hidden relationships between quality features and process parameters across different manufacturing processes. A case study in additive manufacturing was used to demonstrate the feasibility of the proposed methodology to maintain high product quality and adapt to product quality variations. This paper demonstrates how topological graph visualization can be effectively used for the real-time identification of new representative data through the Stream-of-Quality assessment.
Related papers
- Adaptive Data Quality Scoring Operations Framework using Drift-Aware Mechanism for Industrial Applications [0.0]
We introduce a novel framework to address the challenges posed by dynamic quality dimensions in industrial data streams.
The framework integrates a dynamic change detector mechanism that actively monitors and adapts to changes in data quality.
The experimental results reveal high predictive performance and efficient processing time, highlighting its effectiveness in practical quality-driven AI applications.
arXiv Detail & Related papers (2024-08-13T08:32:06Z) - Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
We introduce Q-Ground, the first framework aimed at tackling fine-scale visual quality grounding.
Q-Ground combines large multi-modality models with detailed visual quality analysis.
Central to our contribution is the introduction of the QGround-100K dataset.
arXiv Detail & Related papers (2024-07-24T06:42:46Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
We propose to deploy a digital twin of the production line by encoding its operational logic in a data-driven approach.
We adopt a quality prediction model for production process based on self-attention-enabled temporal convolutional neural networks.
Our operation experiments on a specific tobacco shredding line demonstrate that the proposed digital twin-based production process optimization method fosters seamless integration between virtual and real production lines.
arXiv Detail & Related papers (2024-05-20T09:28:23Z) - A Novel Metric for Measuring Data Quality in Classification Applications
(extended version) [0.0]
We introduce and explain a novel metric to measure data quality.
This metric is based on the correlated evolution between the classification performance and the deterioration of data.
We provide an interpretation of each criterion and examples of assessment levels.
arXiv Detail & Related papers (2023-12-13T11:20:09Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Making informed decisions in cutting tool maintenance in milling: A KNN
based model agnostic approach [0.0]
This research paper presents a KNN based white box model, which allows us to dive deep into how the model performs the classification and how it prioritizes the different features included.
This approach helps in detecting why the tool is in a certain condition and allows the manufacturer to make an informed decision about the tools maintenance.
arXiv Detail & Related papers (2023-10-23T07:02:30Z) - Stochastic Deep Koopman Model for Quality Propagation Analysis in
Multistage Manufacturing Systems [1.178566843877027]
This study introduces a deep Koopman (SDK) framework to model the complex behavior of MMSs.
We present a novel application of Koopman operators to propagate critical quality information extracted by variational autoencoders.
arXiv Detail & Related papers (2023-09-18T22:53:17Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Image Quality Assessment in the Modern Age [53.19271326110551]
This tutorial provides the audience with the basic theories, methodologies, and current progresses of image quality assessment (IQA)
We will first revisit several subjective quality assessment methodologies, with emphasis on how to properly select visual stimuli.
Both hand-engineered and (deep) learning-based methods will be covered.
arXiv Detail & Related papers (2021-10-19T02:38:46Z) - A Diagnostic Study of Explainability Techniques for Text Classification [52.879658637466605]
We develop a list of diagnostic properties for evaluating existing explainability techniques.
We compare the saliency scores assigned by the explainability techniques with human annotations of salient input regions to find relations between a model's performance and the agreement of its rationales with human ones.
arXiv Detail & Related papers (2020-09-25T12:01:53Z) - Toward Enabling a Reliable Quality Monitoring System for Additive
Manufacturing Process using Deep Convolutional Neural Networks [0.0]
We propose an automated quality grading system for the Additive Manufacturing (AM) process using a deep convolutional neural network (CNN) model.
The CNN model is trained offline using the images of the internal and surface defects in the layer-by-layer deposition of materials and tested online by studying the performance of detecting and classifying the failure in AM process at different extruder speeds and temperatures.
The proposed online model adds an automated, consistent, and non-contact quality control signal to the AM process that eliminates the manual inspection of parts after they are entirely built.
arXiv Detail & Related papers (2020-03-06T20:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.