Adaptive Data Quality Scoring Operations Framework using Drift-Aware Mechanism for Industrial Applications
- URL: http://arxiv.org/abs/2408.06724v1
- Date: Tue, 13 Aug 2024 08:32:06 GMT
- Title: Adaptive Data Quality Scoring Operations Framework using Drift-Aware Mechanism for Industrial Applications
- Authors: Firas Bayram, Bestoun S. Ahmed, Erik Hallin,
- Abstract summary: We introduce a novel framework to address the challenges posed by dynamic quality dimensions in industrial data streams.
The framework integrates a dynamic change detector mechanism that actively monitors and adapts to changes in data quality.
The experimental results reveal high predictive performance and efficient processing time, highlighting its effectiveness in practical quality-driven AI applications.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within data-driven artificial intelligence (AI) systems for industrial applications, ensuring the reliability of the incoming data streams is an integral part of trustworthy decision-making. An approach to assess data validity is data quality scoring, which assigns a score to each data point or stream based on various quality dimensions. However, certain dimensions exhibit dynamic qualities, which require adaptation on the basis of the system's current conditions. Existing methods often overlook this aspect, making them inefficient in dynamic production environments. In this paper, we introduce the Adaptive Data Quality Scoring Operations Framework, a novel framework developed to address the challenges posed by dynamic quality dimensions in industrial data streams. The framework introduces an innovative approach by integrating a dynamic change detector mechanism that actively monitors and adapts to changes in data quality, ensuring the relevance of quality scores. We evaluate the proposed framework performance in a real-world industrial use case. The experimental results reveal high predictive performance and efficient processing time, highlighting its effectiveness in practical quality-driven AI applications.
Related papers
- A Theoretical Framework for AI-driven data quality monitoring in high-volume data environments [1.2753215270475886]
This paper presents a theoretical framework for an AI-driven data quality monitoring system designed to address the challenges of maintaining data quality in high-volume environments.
We examine the limitations of traditional methods in managing the scale, velocity, and variety of big data and propose a conceptual approach leveraging advanced machine learning techniques.
Key components include an intelligent data ingestion layer, adaptive preprocessing mechanisms, context-aware feature extraction, and AI-based quality assessment modules.
arXiv Detail & Related papers (2024-10-11T07:06:36Z) - SKADA-Bench: Benchmarking Unsupervised Domain Adaptation Methods with Realistic Validation [55.87169702896249]
Unsupervised Domain Adaptation (DA) consists of adapting a model trained on a labeled source domain to perform well on an unlabeled target domain with some data distribution shift.
We propose a framework to evaluate DA methods and present a fair evaluation of existing shallow algorithms, including reweighting, mapping, and subspace alignment.
Our benchmark highlights the importance of realistic validation and provides practical guidance for real-life applications.
arXiv Detail & Related papers (2024-07-16T12:52:29Z) - AI-Driven Frameworks for Enhancing Data Quality in Big Data Ecosystems: Error_Detection, Correction, and Metadata Integration [0.0]
This thesis proposes a novel set of interconnected frameworks aimed at enhancing big data quality comprehensively.
Firstly, we introduce new quality metrics and a weighted scoring system for precise data quality assessment.
Thirdly, we present a generic framework for detecting various quality anomalies using AI models.
arXiv Detail & Related papers (2024-05-06T21:36:45Z) - Evaluating the Energy Efficiency of Few-Shot Learning for Object
Detection in Industrial Settings [6.611985866622974]
This paper presents a finetuning approach to adapt standard object detection models to downstream tasks.
Case study and evaluation of the energy demands of the developed models are presented.
Finally, this paper introduces a novel way to quantify this trade-off through a customized Efficiency Factor metric.
arXiv Detail & Related papers (2024-03-11T11:41:30Z) - Reliability in Semantic Segmentation: Can We Use Synthetic Data? [69.28268603137546]
We show for the first time how synthetic data can be specifically generated to assess comprehensively the real-world reliability of semantic segmentation models.
This synthetic data is employed to evaluate the robustness of pretrained segmenters.
We demonstrate how our approach can be utilized to enhance the calibration and OOD detection capabilities of segmenters.
arXiv Detail & Related papers (2023-12-14T18:56:07Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - Quality In / Quality Out: Assessing Data quality in an Anomaly Detection
Benchmark [0.13764085113103217]
We show that relatively minor modifications on the same benchmark dataset (UGR'16, a flow-based real-traffic dataset for anomaly detection) cause significantly more impact on model performance than the specific Machine Learning technique considered.
Our findings illustrate the need to devote more attention into (automatic) data quality assessment and optimization techniques in the context of autonomous networks.
arXiv Detail & Related papers (2023-05-31T12:03:12Z) - Deep Learning based pipeline for anomaly detection and quality
enhancement in industrial binder jetting processes [68.8204255655161]
Anomaly detection describes methods of finding abnormal states, instances or data points that differ from a normal value space.
This paper contributes to a data-centric way of approaching artificial intelligence in industrial production.
arXiv Detail & Related papers (2022-09-21T08:14:34Z) - DAPPER: Label-Free Performance Estimation after Personalization for
Heterogeneous Mobile Sensing [95.18236298557721]
We present DAPPER (Domain AdaPtation Performance EstimatoR) that estimates the adaptation performance in a target domain with unlabeled target data.
Our evaluation with four real-world sensing datasets compared against six baselines shows that DAPPER outperforms the state-of-the-art baseline by 39.8% in estimation accuracy.
arXiv Detail & Related papers (2021-11-22T08:49:33Z) - Anomaly Detection Based on Selection and Weighting in Latent Space [73.01328671569759]
We propose a novel selection-and-weighting-based anomaly detection framework called SWAD.
Experiments on both benchmark and real-world datasets have shown the effectiveness and superiority of SWAD.
arXiv Detail & Related papers (2021-03-08T10:56:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.