論文の概要: BMapEst: Estimation of Brain Tissue Probability Maps using a Differentiable MRI Simulator
- arxiv url: http://arxiv.org/abs/2404.14739v2
- Date: Sun, 30 Jun 2024 04:00:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-02 14:29:42.331395
- Title: BMapEst: Estimation of Brain Tissue Probability Maps using a Differentiable MRI Simulator
- Title(参考訳): BMapEst:微分MRIシミュレータによる脳組織確率マップの推定
- Authors: Utkarsh Gupta, Emmanouil Nikolakakis, Moritz Zaiss, Razvan Marinescu,
- Abstract要約: 物理学に基づく微分MRIシミュレータの助けを借りて、脳組織確率マップを推定する最初のフレームワークを実証する。
我々は、BrainWebデータベースから20のスキャンでモデルを検証し、GM、WM、CSFの高精度な再構築を実証した。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reconstructing digital brain phantoms in the form of voxel-based, multi-channeled tissue probability maps for individual subjects is essential for capturing brain anatomical variability, understanding neurological diseases, as well as for testing image processing methods. We demonstrate the first framework that estimates brain tissue probability maps (Grey Matter - GM, White Matter - WM, and Cerebrospinal fluid - CSF) with the help of a Physics-based differentiable MRI simulator that models the magnetization signal at each voxel in the volume. Given an observed $T_1$/$T_2$-weighted MRI scan, the corresponding clinical MRI sequence, and the MRI differentiable simulator, we estimate the simulator's input probability maps by back-propagating the L2 loss between the simulator's output and the $T_1$/$T_2$-weighted scan. This approach has the significant advantage of not relying on any training data and instead uses the strong inductive bias of the MRI simulator. We tested the model on 20 scans from the BrainWeb database and demonstrated a highly accurate reconstruction of GM, WM, and CSF. Our source code is available online: https://github.com/BioMedAI-UCSC/BMapEst.
- Abstract(参考訳): 個々の被験者に対するボクセルベースの多チャンネル組織確率マップの形でデジタル脳ファントムを再構成することは、脳の解剖学的変動を捉え、神経疾患を理解し、画像処理方法をテストするのに不可欠である。
脳組織の確率マップ(Grey Matter - GM, White Matter - WM, Cerebrospinal fluid - CSF)を物理ベースの微分MRIシミュレータを用いて推定し, 体積のボクセルごとに磁化信号をモデル化した。
測定されたT_1$/$T_2$-weighted MRIスキャン,対応する臨床MRIシーケンス,MRIの微分可能シミュレータを用いて,シミュレータの出力とT_1$/$T_2$-weightedスキャンとの間のL2損失をバックプロパゲートすることにより,シミュレータの入力確率マップを推定する。
このアプローチには、トレーニングデータに頼らず、MRIシミュレータの強い誘導バイアスを使用するという大きな利点がある。
我々は、BrainWebデータベースから20のスキャンでモデルを検証し、GM、WM、CSFの高精度な再構成を実証した。
ソースコードはオンラインで入手できる。 https://github.com/BioMedAI-UCSC/BMapEst。
関連論文リスト
- Unifying Subsampling Pattern Variations for Compressed Sensing MRI with Neural Operators [72.79532467687427]
圧縮センシングMRI(Compressed Sensing MRI)は、身体の内部解剖像をアンダーサンプルと圧縮された測定値から再構成する。
ディープニューラルネットワークは、高度にアンサンプされた測定結果から高品質なイメージを再構築する大きな可能性を示している。
CS-MRIにおけるサブサンプリングパターンや画像解像度に頑健な統一モデルを提案する。
論文 参考訳(メタデータ) (2024-10-05T20:03:57Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
本稿では,MindFormer を用いたマルチオブジェクト fMRI 信号のセマンティックアライメント手法を提案する。
このモデルは、fMRIから画像生成のための安定拡散モデルや、fMRIからテキスト生成のための大規模言語モデル(LLM)の条件付けに使用できるfMRI条件付き特徴ベクトルを生成するように設計されている。
実験の結果,MindFormerは意味的に一貫した画像とテキストを異なる主題にわたって生成することがわかった。
論文 参考訳(メタデータ) (2024-05-28T00:36:25Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
本稿では,fMRI事前学習のための革新的オートエンコーダであるfMRI-PTEを提案する。
我々のアプローチでは、fMRI信号を統合された2次元表現に変換し、次元の整合性を確保し、脳の活動パターンを保存する。
コントリビューションには、fMRI-PTEの導入、革新的なデータ変換、効率的なトレーニング、新しい学習戦略、そして我々のアプローチの普遍的な適用性が含まれる。
論文 参考訳(メタデータ) (2023-11-01T07:24:22Z) - Fetal-BET: Brain Extraction Tool for Fetal MRI [4.214523989654048]
約72,000個の胎児脳MRI画像の注釈付きデータセットを構築した。
このデータセットを用いて、U-Netスタイルアーキテクチャのパワーを利用してディープラーニング手法を開発し、検証した。
本手法では,マルチコントラスト(マルチシーケンス)胎児MRIデータからの豊富な情報を活用し,胎児の脳構造を正確に把握する。
論文 参考訳(メタデータ) (2023-10-02T18:14:23Z) - Video4MRI: An Empirical Study on Brain Magnetic Resonance Image
Analytics with CNN-based Video Classification Frameworks [60.42012344842292]
3次元CNNモデルが磁気共鳴画像(MRI)解析の分野を支配している。
本稿では,アルツハイマー病とパーキンソン病の認識の4つのデータセットを実験に利用した。
効率の面では、ビデオフレームワークは3D-CNNモデルよりも5%から11%、トレーニング可能なパラメータは50%から66%少ない。
論文 参考訳(メタデータ) (2023-02-24T15:26:31Z) - A Survey of Feature detection methods for localisation of plain sections
of Axial Brain Magnetic Resonance Imaging [0.0]
患者のMRI画像と患者のMRIスライスを脳の模擬アトラスにマッピングすることは、脳のMRIの自動登録の鍵となる。
本研究では,脳のMRIと異なる患者のMRIのマッチングや,MRIのスライスと脳のアトラスの位置をマッチングする手法とアプローチを比較できるように,ロバストネス,精度,累積距離の計測と方法論を導入している。
論文 参考訳(メタデータ) (2023-02-08T16:24:09Z) - BrainFormer: A Hybrid CNN-Transformer Model for Brain fMRI Data
Classification [31.83866719445596]
BrainFormerは、単一のfMRIボリュームを持つ脳疾患分類のための一般的なハイブリッドトランスフォーマーアーキテクチャである。
BrainFormerは、各voxel内のローカルキューを3D畳み込みでモデル化することによって構築される。
我々は、ABIDE、ADNI、MPILMBB、ADHD-200、ECHOを含む5つの独立して取得したデータセット上でBrainFormerを評価する。
論文 参考訳(メタデータ) (2022-08-05T07:54:10Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Weakly-supervised Biomechanically-constrained CT/MRI Registration of the
Spine [72.85011943179894]
本稿では,各脊椎の剛性と容積を保存し,登録精度を最大化しながら,弱教師付き深層学習フレームワークを提案する。
また,CTにおける椎体自動分節化はMRIと対比してより正確な結果をもたらすため,CTラベルマップのみに依存するよう,これらの損失を特に設計する。
以上の結果から, 解剖学的認識による損失の増大は, 精度を維持しつつも, 推測変換の妥当性を高めることが示唆された。
論文 参考訳(メタデータ) (2022-05-16T10:59:55Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
我々は、Deep Transfer Learningを用いて脳MRI画像中の腫瘍の多重分類を行うフレームワークを開発した。
新たなデータセットと2つの公開MRI脳データセットを使用して、提案手法は86.40%の精度で分類された。
本研究は,脳腫瘍のマルチクラス化タスクにおいて,トランスファーラーニングのためのフレームワークが有用かつ効果的な方法であることを示すものである。
論文 参考訳(メタデータ) (2021-06-14T12:19:27Z) - Deep Learning-based Type Identification of Volumetric MRI Sequences [5.407839873345339]
MRI配列の標準化されていない命名は、自動システムでは識別が困難である。
本稿では,深層学習に基づく脳MRIシークエンスを同定するシステムを提案する。
我々のシステムは96.81%の精度でシーケンスタイプを分類できる。
論文 参考訳(メタデータ) (2021-06-06T18:34:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。