Gradient Guidance for Diffusion Models: An Optimization Perspective
- URL: http://arxiv.org/abs/2404.14743v1
- Date: Tue, 23 Apr 2024 04:51:02 GMT
- Title: Gradient Guidance for Diffusion Models: An Optimization Perspective
- Authors: Yingqing Guo, Hui Yuan, Yukang Yang, Minshuo Chen, Mengdi Wang,
- Abstract summary: We study the theoretic aspects of a guided score-based sampling process.
We show that adding gradient guidance to the sampling process of a pre-trained diffusion model is essentially equivalent to solving a regularized optimization problem.
- Score: 45.6080199096424
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated empirical successes in various applications and can be adapted to task-specific needs via guidance. This paper introduces a form of gradient guidance for adapting or fine-tuning diffusion models towards user-specified optimization objectives. We study the theoretic aspects of a guided score-based sampling process, linking the gradient-guided diffusion model to first-order optimization. We show that adding gradient guidance to the sampling process of a pre-trained diffusion model is essentially equivalent to solving a regularized optimization problem, where the regularization term acts as a prior determined by the pre-training data. Diffusion models are able to learn data's latent subspace, however, explicitly adding the gradient of an external objective function to the sample process would jeopardize the structure in generated samples. To remedy this issue, we consider a modified form of gradient guidance based on a forward prediction loss, which leverages the pre-trained score function to preserve the latent structure in generated samples. We further consider an iteratively fine-tuned version of gradient-guided diffusion where one can query gradients at newly generated data points and update the score network using new samples. This process mimics a first-order optimization iteration in expectation, for which we proved O(1/K) convergence rate to the global optimum when the objective function is concave.
Related papers
- Flows and Diffusions on the Neural Manifold [0.0]
Diffusion and flow-based generative models have achieved remarkable success in domains such as image synthesis, video generation, and natural language modeling.<n>We extend these advances to weight space learning by leveraging recent techniques to incorporate structural priors derived from optimization dynamics.
arXiv Detail & Related papers (2025-07-14T02:26:06Z) - Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
We propose a Tailored Optimization Preference (TailorPO) framework for aligning diffusion models with human preference.
Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues.
Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
arXiv Detail & Related papers (2025-02-01T16:08:43Z) - Optimization Insights into Deep Diagonal Linear Networks [10.395029724463672]
We study the implicit regularization properties of the gradient flow "algorithm" for estimating the parameters of a deep diagonal neural network.
Our main contribution is showing that this gradient flow induces a mirror flow dynamic on the model, meaning that it is biased towards a specific solution of the problem.
arXiv Detail & Related papers (2024-12-21T20:23:47Z) - Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - Understanding Reinforcement Learning-Based Fine-Tuning of Diffusion Models: A Tutorial and Review [63.31328039424469]
This tutorial provides a comprehensive survey of methods for fine-tuning diffusion models to optimize downstream reward functions.
We explain the application of various RL algorithms, including PPO, differentiable optimization, reward-weighted MLE, value-weighted sampling, and path consistency learning.
arXiv Detail & Related papers (2024-07-18T17:35:32Z) - Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis [10.79615566320291]
In the transfer learning paradigm models learn useful representations (or features) during a data-rich pretraining stage, and then use the pretrained representation to improve model performance on data-scarce downstream tasks.
In this work, we explore transfer learning with the goal of optimizing downstream performance.
arXiv Detail & Related papers (2024-04-18T19:33:55Z) - Variational Stochastic Gradient Descent for Deep Neural Networks [16.96187187108041]
Current state-of-the-arts are adaptive gradient-based optimization methods such as Adam.
Here, we propose to combine both approaches, resulting in the Variational Gradient Descent (VSGD)
We show how our VSGD method relates to other adaptive gradient-baseds like Adam.
arXiv Detail & Related papers (2024-04-09T18:02:01Z) - Enhancing Generalization in Medical Visual Question Answering Tasks via
Gradient-Guided Model Perturbation [16.22199565010318]
We introduce a method that incorporates gradient-guided perturbations to the visual encoder of the multimodality model during both pre-training and fine-tuning phases.
The results show that, even with a significantly smaller pre-training image caption dataset, our approach achieves competitive outcomes.
arXiv Detail & Related papers (2024-03-05T06:57:37Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Information-Theoretic Trust Regions for Stochastic Gradient-Based
Optimization [17.79206971486723]
We show that arTuRO combines the fast convergence of adaptive moment-based optimization with the capabilities of SGD.
We approximate the diagonal elements of the Hessian from gradients, constructing a model of the expected Hessian over time using only first-order information.
We show that arTuRO combines the fast convergence of adaptive moment-based optimization with the capabilities of SGD.
arXiv Detail & Related papers (2023-10-31T16:08:38Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
A popular approach to protein design is to combine a generative model with a discriminative model for conditional sampling.
We propose diffusioN Optimized Sampling (NOS), a guidance method for discrete diffusion models.
NOS makes it possible to perform design directly in sequence space, circumventing significant limitations of structure-based methods.
arXiv Detail & Related papers (2023-05-31T16:31:24Z) - Towards Optimization and Model Selection for Domain Generalization: A
Mixup-guided Solution [43.292274574847234]
We propose Mixup guided optimization and selection techniques for domain generalization.
For optimization, we utilize an out-of-distribution dataset that can guide the preference direction.
For model selection, we generate a validation dataset with a closer distance to the target distribution.
arXiv Detail & Related papers (2022-09-01T02:18:00Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.