Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images
- URL: http://arxiv.org/abs/2404.14747v1
- Date: Tue, 23 Apr 2024 04:59:34 GMT
- Title: Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images
- Authors: Mareike Thies, Noah Maul, Siyuan Mei, Laura Pfaff, Nastassia Vysotskaya, Mingxuan Gu, Jonas Utz, Dennis Possart, Lukas Folle, Fabian Wagner, Andreas Maier,
- Abstract summary: Motion artifacts can compromise the diagnostic value of computed tomography (CT) images.
We train a score-based model to act as a probability density estimator for clean head CT images.
We quantify the deviation of a given motion-affected CT image from the ideal distribution through likelihood.
- Score: 3.0013267540370423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion artifacts can compromise the diagnostic value of computed tomography (CT) images. Motion correction approaches require a per-scan estimation of patient-specific motion patterns. In this work, we train a score-based model to act as a probability density estimator for clean head CT images. Given the trained model, we quantify the deviation of a given motion-affected CT image from the ideal distribution through likelihood computation. We demonstrate that the likelihood can be utilized as a surrogate metric for motion artifact severity in the CT image facilitating the application of an iterative, gradient-based motion compensation algorithm. By optimizing the underlying motion parameters to maximize likelihood, our method effectively reduces motion artifacts, bringing the image closer to the distribution of motion-free scans. Our approach achieves comparable performance to state-of-the-art methods while eliminating the need for a representative data set of motion-affected samples. This is particularly advantageous in real-world applications, where patient motion patterns may exhibit unforeseen variability, ensuring robustness without implicit assumptions about recoverable motion types.
Related papers
- On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation [3.5475653746630056]
This study analyzes the influence of a spline-based motion model within an existing rigid motion compensation algorithm for cone-beam CT.
Results demonstrate that the choice of motion model crucially influences recoverable frequencies.
Ultimately, the optimal motion model is dependent on the imaged anatomy, clinical use case, and scanning protocol.
arXiv Detail & Related papers (2024-05-29T13:36:16Z) - Generalized Consistency Trajectory Models for Image Manipulation [59.576781858809355]
Diffusion models (DMs) excel in unconditional generation, as well as on applications such as image editing and restoration.
This work aims to unlock the full potential of consistency trajectory models (CTMs) by proposing generalized CTMs (GCTMs)
We discuss the design space of GCTMs and demonstrate their efficacy in various image manipulation tasks such as image-to-image translation, restoration, and editing.
arXiv Detail & Related papers (2024-03-19T07:24:54Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
This paper proposes to exploit the ability of Tractable Probabilistic Models (TPMs) to exactly and efficiently compute the constrained posterior.
Specifically, this paper adopts a class of expressive TPMs termed Probabilistic Circuits (PCs)
We show that our approach can consistently improve the overall quality and semantic coherence of inpainted images with only 10% additional computational overhead.
arXiv Detail & Related papers (2023-11-28T21:14:02Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Motion Artifacts Detection in Short-scan Dental CBCT Reconstructions [5.147799140853288]
Cone Beam Computed Tomography (CBCT) is widely used in dentistry for diagnostics and treatment planning.
This study uses a framework to extract the motion-free part of the scanned projections with which a clean short-scan volume can be reconstructed without using correction algorithms.
A realistic motion simulation strategy and data augmentation has been implemented to address data scarcity.
arXiv Detail & Related papers (2023-04-20T08:28:44Z) - Geometric Constraints Enable Self-Supervised Sinogram Inpainting in
Sparse-View Tomography [7.416898042520079]
Sparse-angle tomographic scans reduce radiation and accelerate data acquisition, but suffer from image artifacts and noise.
Existing image processing algorithms can restore CT reconstruction quality but often require large training data sets or can not be used for truncated objects.
This work presents a self-supervised projection inpainting method that allows optimizing missing projective views via gradient-based optimization.
arXiv Detail & Related papers (2023-02-13T15:15:18Z) - Joint Rigid Motion Correction and Sparse-View CT via Self-Calibrating
Neural Field [37.86878619100209]
NeRF has widely received attention in Sparse-View (SV) CT reconstruction problems as a self-supervised deep learning framework.
Existing NeRF-based SVCT methods strictly suppose there is completely no relative motion during the CT acquisition.
This work proposes a self-calibrating neural field that recovers the artifacts-free image from the rigid motion-corrupted SV measurement.
arXiv Detail & Related papers (2022-10-23T13:55:07Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Inertial Measurements for Motion Compensation in Weight-bearing
Cone-beam CT of the Knee [6.7461735822055715]
Involuntary motion during CT scans of the knee causes artifacts in the reconstructed volumes making them unusable for clinical diagnosis.
We propose to attach an inertial measurement unit (IMU) to the leg of the subject in order to measure the motion during the scan and correct for it.
arXiv Detail & Related papers (2020-07-09T09:26:27Z) - Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT
Image Data [63.73263986460191]
Localizing structures and estimating the motion of a specific target region are common problems for navigation during surgical interventions.
We investigate whether using a temporal stream of OCT image volumes can improve deep learning-based motion estimation performance.
Using 4D information for the model input improves performance while maintaining reasonable inference times.
arXiv Detail & Related papers (2020-04-21T15:43:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.