On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation
- URL: http://arxiv.org/abs/2405.19079v1
- Date: Wed, 29 May 2024 13:36:16 GMT
- Title: On the Influence of Smoothness Constraints in Computed Tomography Motion Compensation
- Authors: Mareike Thies, Fabian Wagner, Noah Maul, Siyuan Mei, Mingxuan Gu, Laura Pfaff, Nastassia Vysotskaya, Haijun Yu, Andreas Maier,
- Abstract summary: This study analyzes the influence of a spline-based motion model within an existing rigid motion compensation algorithm for cone-beam CT.
Results demonstrate that the choice of motion model crucially influences recoverable frequencies.
Ultimately, the optimal motion model is dependent on the imaged anatomy, clinical use case, and scanning protocol.
- Score: 3.5475653746630056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computed tomography (CT) relies on precise patient immobilization during image acquisition. Nevertheless, motion artifacts in the reconstructed images can persist. Motion compensation methods aim to correct such artifacts post-acquisition, often incorporating temporal smoothness constraints on the estimated motion patterns. This study analyzes the influence of a spline-based motion model within an existing rigid motion compensation algorithm for cone-beam CT on the recoverable motion frequencies. Results demonstrate that the choice of motion model crucially influences recoverable frequencies. The optimization-based motion compensation algorithm is able to accurately fit the spline nodes for frequencies almost up to the node-dependent theoretical limit according to the Nyquist-Shannon theorem. Notably, a higher node count does not compromise reconstruction performance for slow motion patterns, but can extend the range of recoverable high frequencies for the investigated algorithm. Eventually, the optimal motion model is dependent on the imaged anatomy, clinical use case, and scanning protocol and should be tailored carefully to the expected motion frequency spectrum to ensure accurate motion compensation.
Related papers
- Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging [10.618048010632728]
We propose a novel self-supervised deep learning-based framework, dubbed the Local-All Pass Attention Network (LAPANet) for non-rigid motion estimation.
LAPANet was evaluated on cardiac motion estimation across various sampling trajectories and acceleration rates.
The achieved high temporal resolution (less than 5 ms) for non-rigid motion opens new avenues for motion detection, tracking and correction in dynamic and real-time MRI applications.
arXiv Detail & Related papers (2024-10-24T15:19:59Z) - Differentiable Score-Based Likelihoods: Learning CT Motion Compensation From Clean Images [3.0013267540370423]
Motion artifacts can compromise the diagnostic value of computed tomography (CT) images.
We train a score-based model to act as a probability density estimator for clean head CT images.
We quantify the deviation of a given motion-affected CT image from the ideal distribution through likelihood.
arXiv Detail & Related papers (2024-04-23T04:59:34Z) - Motion-adaptive Separable Collaborative Filters for Blind Motion Deblurring [71.60457491155451]
Eliminating image blur produced by various kinds of motion has been a challenging problem.
We propose a novel real-world deblurring filtering model called the Motion-adaptive Separable Collaborative Filter.
Our method provides an effective solution for real-world motion blur removal and achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-04-19T19:44:24Z) - Volumetric Reconstruction Resolves Off-Resonance Artifacts in Static and
Dynamic PROPELLER MRI [76.60362295758596]
Off-resonance artifacts in magnetic resonance imaging (MRI) are visual distortions that occur when the actual resonant frequencies of spins within the imaging volume differ from the expected frequencies used to encode spatial information.
We propose to resolve these artifacts by lifting the 2D MRI reconstruction problem to 3D, introducing an additional "spectral" dimension to model this off-resonance.
arXiv Detail & Related papers (2023-11-22T05:44:51Z) - Motion Artifacts Detection in Short-scan Dental CBCT Reconstructions [5.147799140853288]
Cone Beam Computed Tomography (CBCT) is widely used in dentistry for diagnostics and treatment planning.
This study uses a framework to extract the motion-free part of the scanned projections with which a clean short-scan volume can be reconstructed without using correction algorithms.
A realistic motion simulation strategy and data augmentation has been implemented to address data scarcity.
arXiv Detail & Related papers (2023-04-20T08:28:44Z) - Retrospective Motion Correction in Gradient Echo MRI by Explicit Motion
Estimation Using Deep CNNs [0.0]
We propose a strategy to correct for motion artifacts using Deep Convolutional Neuronal Networks (Deep CNNs)
We show that using Deep CNNs the concepts of rigid motion compensation can be generalized to more complex motion fields.
arXiv Detail & Related papers (2023-03-30T09:16:13Z) - Self-Supervised Learning of Perceptually Optimized Block Motion
Estimates for Video Compression [50.48504867843605]
We propose a search-free block motion estimation framework using a multi-stage convolutional neural network.
We deploy the multi-scale structural similarity (MS-SSIM) loss function to optimize the perceptual quality of the motion compensated predicted frames.
arXiv Detail & Related papers (2021-10-05T03:38:43Z) - Focal Frequency Loss for Image Reconstruction and Synthesis [125.7135706352493]
We show that narrowing gaps in the frequency domain can ameliorate image reconstruction and synthesis quality further.
We propose a novel focal frequency loss, which allows a model to adaptively focus on frequency components that are hard to synthesize.
arXiv Detail & Related papers (2020-12-23T17:32:04Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - Inertial Measurements for Motion Compensation in Weight-bearing
Cone-beam CT of the Knee [6.7461735822055715]
Involuntary motion during CT scans of the knee causes artifacts in the reconstructed volumes making them unusable for clinical diagnosis.
We propose to attach an inertial measurement unit (IMU) to the leg of the subject in order to measure the motion during the scan and correct for it.
arXiv Detail & Related papers (2020-07-09T09:26:27Z) - A Novel Approach for Correcting Multiple Discrete Rigid In-Plane Motions
Artefacts in MRI Scans [63.28835187934139]
We propose a novel method for removing motion artefacts using a deep neural network with two input branches.
The proposed method can be applied to artefacts generated by multiple movements of the patient.
arXiv Detail & Related papers (2020-06-24T15:25:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.