論文の概要: FLARE: A New Federated Learning Framework with Adjustable Learning Rates over Resource-Constrained Wireless Networks
- arxiv url: http://arxiv.org/abs/2404.14811v1
- Date: Tue, 23 Apr 2024 07:48:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 14:51:00.824379
- Title: FLARE: A New Federated Learning Framework with Adjustable Learning Rates over Resource-Constrained Wireless Networks
- Title(参考訳): FLARE - リソース制約のある無線ネットワーク上での調整可能な学習率を持つ新しいフェデレーション学習フレームワーク
- Authors: Bingnan Xiao, Jingjing Zhang, Wei Ni, Xin Wang,
- Abstract要約: ワイヤレス・フェデレート・ラーニング(WFL)は、データ分散、計算能力、チャネル条件などにおいて不均一性に悩まされている。
本稿では,Federated Learning Adjusted lean ratE (FLR ratE)による新しいアイデアを提案する。
FLAREが一貫してベースラインを上回っている実験。
- 参考スコア(独自算出の注目度): 20.048146776405005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Wireless federated learning (WFL) suffers from heterogeneity prevailing in the data distributions, computing powers, and channel conditions of participating devices. This paper presents a new Federated Learning with Adjusted leaRning ratE (FLARE) framework to mitigate the impact of the heterogeneity. The key idea is to allow the participating devices to adjust their individual learning rates and local training iterations, adapting to their instantaneous computing powers. The convergence upper bound of FLARE is established rigorously under a general setting with non-convex models in the presence of non-i.i.d. datasets and imbalanced computing powers. By minimizing the upper bound, we further optimize the scheduling of FLARE to exploit the channel heterogeneity. A nested problem structure is revealed to facilitate iteratively allocating the bandwidth with binary search and selecting devices with a new greedy method. A linear problem structure is also identified and a low-complexity linear programming scheduling policy is designed when training models have large Lipschitz constants. Experiments demonstrate that FLARE consistently outperforms the baselines in test accuracy, and converges much faster with the proposed scheduling policy.
- Abstract(参考訳): 無線連合学習(WFL)は、データ分散、計算能力、参加するデバイスのチャネル条件などにおいて、不均一性に悩まされている。
本稿では、不均一性の影響を軽減するために、FLARE(Federated Learning with Adjusted leaRning RatE)フレームワークを提案する。
鍵となるアイデアは、参加するデバイスが個々の学習率とローカルトレーニングのイテレーションを調整し、瞬時に計算能力に適応できるようにすることだ。
FLAREの収束上限は、非I.D.データセットと不均衡な計算能力の存在下で、非凸モデルによる一般的な設定の下で厳格に確立される。
上限を最小化することにより、FLAREのスケジューリングをさらに最適化し、チャネルの不均一性を利用する。
ネストされた問題構造は、二分探索により帯域幅を反復的に割当てし、新しい欲求法によりデバイスを選択することを容易にする。
線形問題構造も同定され、トレーニングモデルが大きなリプシッツ定数を持つ場合、低複雑さの線形計画スケジューリングポリシーが設計される。
実験により、FLAREは試験精度において基準線を一貫して上回り、提案したスケジューリングポリシーとより高速に収束することを示した。
関連論文リスト
- Over-the-Air Federated Learning and Optimization [52.5188988624998]
エッジ・ザ・エア計算(AirComp)によるフェデレーション学習(FL)に焦点を当てる。
本稿では,AirComp ベースの FedAvg (AirFedAvg) アルゴリズムの凸および非凸条件下での収束について述べる。
エッジデバイス(モデル、勾配、モデル差など)で送信できるローカルアップデートの種類によって、AirFedAvgで送信するとアグリゲーションエラーが発生する可能性がある。
さらに、より実用的な信号処理方式を検討し、通信効率を改善し、これらの信号処理方式によって引き起こされるモデル集約誤差の異なる形式に収束解析を拡張する。
論文 参考訳(メタデータ) (2023-10-16T05:49:28Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
フェデレーション学習(FL)は、データプライバシを保護しながら、エッジデバイス間での分散学習を可能にする。
これらの課題を克服するために、部分的なモデルプルーニングとパーソナライズを備えたFLフレームワークを検討する。
このフレームワークは、学習モデルを、データ表現を学ぶためにすべてのデバイスと共有されるモデルプルーニングと、特定のデバイスのために微調整されるパーソナライズされた部分とで、グローバルな部分に分割する。
論文 参考訳(メタデータ) (2023-09-04T21:10:45Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
本稿では、データの不均一性を考慮した無線FLの性能解析と最適化と、無線リソース割り当てについて述べる。
ロス関数の最小化問題を、長期エネルギー消費と遅延の制約の下で定式化し、クライアントスケジューリング、リソース割り当て、ローカルトレーニングエポック数(CRE)を共同で最適化する。
実世界のデータセットの実験により、提案アルゴリズムは学習精度とエネルギー消費の点で他のベンチマークよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-08-04T04:18:01Z) - Adaptive Federated Pruning in Hierarchical Wireless Networks [69.6417645730093]
Federated Learning(FL)は、サーバがプライベートデータセットにアクセスすることなく、複数のデバイスによって更新されたモデルを集約する、プライバシ保護の分散学習フレームワークである。
本稿では,無線ネットワークにおけるHFLのモデルプルーニングを導入し,ニューラルネットワークの規模を小さくする。
提案するHFLは,モデルプルーニングを伴わないHFLと比較して学習精度が良く,通信コストが約50%削減できることを示す。
論文 参考訳(メタデータ) (2023-05-15T22:04:49Z) - Communication-Efficient Device Scheduling for Federated Learning Using
Stochastic Optimization [26.559267845906746]
Time Learning(FL)は、ユーザのローカルデータセットをプライバシ保存形式で利用する分散機械学習において有用なツールである。
本稿では,非効率収束境界アルゴリズムを提案する。
また、電力制約下での収束境界と平均通信の関数を最小化する新しい選択および電力割当アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-01-19T23:25:24Z) - Unit-Modulus Wireless Federated Learning Via Penalty Alternating
Minimization [64.76619508293966]
Wireless Federated Learning(FL)は、分散データセットから無線通信を介してグローバルパラメトリックモデルをトレーニングする、新興機械学習パラダイムである。
本稿では、ローカルモデルパラメータをアップロードし、無線通信を介してグローバルモデルパラメータを算出する無線FLフレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-31T08:19:54Z) - Fast Federated Learning in the Presence of Arbitrary Device
Unavailability [26.368873771739715]
Federated Learning (FL)は異種デバイスをコーディネートして、ユーザのプライバシを維持しながら共有モデルを協調的にトレーニングする。
ひとつの課題は、デバイスが中央サーバ以外のトレーニングプロセスから外れることだ。
我々はこの問題を解決するためにIm Federated A patientaging (MIFA)を提案する。
論文 参考訳(メタデータ) (2021-06-08T07:46:31Z) - Fast-Convergent Federated Learning [82.32029953209542]
フェデレーション学習は、モバイルデバイスの現代的なネットワークを介して機械学習タスクを分散するための、有望なソリューションである。
本稿では,FOLBと呼ばれる高速収束型フェデレーション学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-26T14:37:51Z) - Joint Device Scheduling and Resource Allocation for Latency Constrained
Wireless Federated Learning [26.813145949399427]
FL(Federated Learning)では、デバイスがローカルモデルの更新を無線チャネル経由でアップロードする。
モデル精度を最大化するために,共同装置スケジューリングと資源配分ポリシーを提案する。
実験の結果,提案手法は最先端のスケジューリング方式よりも優れていた。
論文 参考訳(メタデータ) (2020-07-14T16:46:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。