論文の概要: Enhancing Chain of Thought Prompting in Large Language Models via Reasoning Patterns
- arxiv url: http://arxiv.org/abs/2404.14812v2
- Date: Thu, 13 Mar 2025 03:03:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-14 15:50:11.212396
- Title: Enhancing Chain of Thought Prompting in Large Language Models via Reasoning Patterns
- Title(参考訳): 推論パターンを用いた大規模言語モデルにおける思考プロンプトの連鎖強化
- Authors: Yufeng Zhang, Xuepeng Wang, Lingxiang Wu, Jinqiao Wang,
- Abstract要約: Chain of Thought (CoT) は言語モデルに論理的推論を奨励する。
我々は,CoTの促進効果を高めるために推論パターンを活用することを提案する。
- 参考スコア(独自算出の注目度): 26.641713417293538
- License:
- Abstract: Chain of Thought (CoT) prompting can encourage language models to engage in multi-step logical reasoning. The quality of the provided demonstrations significantly influences the success of downstream inference tasks. Current unsupervised CoT methods primarily select examples based on the semantics of the questions, which can introduce noise and lack interpretability. In this paper, we propose leveraging reasoning patterns to enhance CoT prompting effectiveness. Reasoning patterns represent the process by which language models arrive at their final results. By utilizing prior knowledge and prompt-based methods from large models, we first construct task-specific pattern sets. We then select diverse demonstrations based on different reasoning patterns. This approach not only mitigates the impact of noise but also provides explicit interpretability to help us understand the mechanisms of CoT. Extensive experiments demonstrate that our method is more robust and consistently leads to improvements across various reasoning tasks.
- Abstract(参考訳): Chain of Thought (CoT) は言語モデルに多段階論理推論を推奨する。
提供されたデモの質は下流推論タスクの成功に大きな影響を及ぼす。
現在の教師なしCoT法は、主に、ノイズを導入し、解釈可能性に欠ける質問のセマンティクスに基づいて、サンプルを選択する。
本稿では,CoTの促進効果を高めるために推論パターンを活用することを提案する。
推論パターンは、言語モデルが最終的な結果に到達するプロセスを表す。
従来の知識と大規模モデルからのプロンプトベースの手法を利用して、まずタスク固有のパターンセットを構築する。
次に、異なる推論パターンに基づいて多様なデモンストレーションを選択します。
このアプローチは、ノイズの影響を緩和するだけでなく、CoTのメカニズムを理解するのに役立つ明確な解釈可能性も提供する。
大規模な実験により,本手法はより堅牢であり,様々な推論タスクの改善に一貫した導出が期待できる。
関連論文リスト
- Stepwise Perplexity-Guided Refinement for Efficient Chain-of-Thought Reasoning in Large Language Models [56.37421741507468]
CoT推論は大規模言語モデル(LLM)の性能を大幅に向上させた。
本稿では,その重要性の尺度としてパープレキシティを用いた批判的推論ステップの同定手法を提案する。
論文 参考訳(メタデータ) (2025-02-18T20:04:51Z) - Self-Harmonized Chain of Thought [8.540320749424172]
CoT(Chain-of- Thought)プロンプトは、中間ステップを通じて複雑な推論を行うための大きな言語モデルの能力を示している。
多様な解経路を一貫した効果的な推論パターンに統一する新しい手法ECHOを提案する。
論文 参考訳(メタデータ) (2024-09-06T06:57:04Z) - Fine-Tuning with Divergent Chains of Thought Boosts Reasoning Through Self-Correction in Language Models [63.36637269634553]
本稿では,複数の推論連鎖を比較するためにモデルを必要とすることによって,性能を向上する新しい手法を提案する。
DCoTデータセットの命令チューニングにより、より小さく、よりアクセスしやすい言語モデルの性能が向上することがわかった。
論文 参考訳(メタデータ) (2024-07-03T15:01:18Z) - Chain of Thoughtlessness? An Analysis of CoT in Planning [17.329365493094542]
推論問題におけるLLM(Large Language Model)のパフォーマンスは通常、分布から一般化しない。
本稿では,古典的計画領域であるBlocksworldの問題に対する思考連鎖のケーススタディを示す。
それらのプロンプトが問題クラスに特有である場合、一連の思考プロンプトから有意義なパフォーマンス改善が得られます。
論文 参考訳(メタデータ) (2024-05-08T02:48:28Z) - Large Language Models as Analogical Reasoners [155.9617224350088]
CoT(Chain-of- Thought)は、言語モデルのプロンプトとして、推論タスク全体で素晴らしいパフォーマンスを示す。
そこで本稿では,大規模言語モデルの推論プロセスを自動的にガイドする,新たなプロンプト手法であるアナログプロンプトを導入する。
論文 参考訳(メタデータ) (2023-10-03T00:57:26Z) - Iterative Forward Tuning Boosts In-Context Learning in Language Models [88.25013390669845]
本研究では,大規模言語モデル(LLM)における文脈内学習を促進する新しい2段階フレームワークを提案する。
具体的には、当社のフレームワークでは、ICLプロセスをDeep-ThinkingとTest Stageの2つの別々のステージに分類しています。
ディープシンキング段階にはユニークな注意機構、すなわち反復的な注意強化機構が組み込まれており、複数の情報の蓄積を可能にしている。
論文 参考訳(メタデータ) (2023-05-22T13:18:17Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z) - Synthetic Prompting: Generating Chain-of-Thought Demonstrations for
Large Language Models [121.54462976635743]
大規模言語モデルはチェーン・オブ・ソート・プロンプトを使用して様々な推論タスクを実行でき、ステップ・バイ・ステップのデモを通じて回答を見つけることができる。
そこで本研究では,手作りの例を数種類活用して,モデルにさらに多くの例を生成する手法であるSynthetic promptingを紹介する。
本手法は数値的,記号的,アルゴリズム的推論タスクにおいて評価し,既存のプロンプト手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-02-01T17:33:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。